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1. SUMMARY

A new method of analysis for predicting thrust augmenting ejector characteristics is
presented and the results ofy computations for a test case discussed. The impetus for the
development of the method is based on three simulation requirements: (1) a predictive
analytic procedure is needed, (2) the method must accommodate some form of turbulent
flow characterization and interchange, and (3) the final system of equations must be
amicable to a real-time simulation objective. A literature search revealed an absence of
ejector research consistent with these combined objectives and that was capable of
describing transient flows.

Within the general framework of the control-volume formulation for continuity,
momentum, and energy there exist time derivatives of field variable volume integrals. Since
these volume integrals cannot be converted into surface integrals, an approximation for the
field variable spatial distribution must be made. Under the assumption that the ejector
mixing region physics dominate ejector performance characteristics, spatial sub-division of
the mixing region permits each sub-volume to be approximated by characteristic velocity,
pressure, and temperature profiles. A description of turbulent flow is provided with
Abramovich-type self similar turbulent flow field variable profiles. Time derivatives of the
volume integral reduce to time derivatives of the field variable characteristics, and, with
treatment of the surface integrals in the "usual” way, a set of differential equations in time
evolves. With the intent to focus primarily on results for ejector thrust, very few (less than
ten) subdivisions of the mixing region are needed, and, therefore, a terse description of the
ejector mixing region is obtained. Although a crude description of the turbulent ejector jet
interaction is employed, the final system of equations can potentially provide real-time
thrust predictions, thereby meeting the aforementioned objectives.

Since a step-change in the ejector driving nozzle flow is representative of typical
ejector operation, an example prediction of this situation is employed as a test case for
application of the methodology.



2. EJECTOR SIMULATION PERSPECTIVE
Role of the Simulation

Research on design methodologies for integrated aircraft and propulsion flight
control systems requires accurate subsystem component simulations. In principle, these
simulations must mimic steady-state and transient component effects. A NASA Lewis
research program is currently underway to develoF a "real-time" simulation -- including
system transients -- for Short Take-Off Vertical Landing (STOVL) aircraft. Thrust
augmenting ejectors are considered potentially valuable propulsion subsystem elements
for the powered-lift aspect of STOVL aircraft. To explore ejector concepts further, the
initial NASA Lewis STOVL system simulation requires a thrust augmenting ejector
sub-system simulation. Unfortunately, an ejector simulation that includes ejector
transients is not currently available; the purpose of the present work is to develop one.

An ejector is a mechanically simple fluidic pump composed essentially of two
components: (1) a "primary” jet nozzle issuing into (2) a shroud. This arrangement
permits entrainment and acceleration of a secondary flow (within the shroud) by the
primary jet. A diffuser section attached to the shroud allows control over the ejector
discharge pressure. Figure 1 illustrates a generic thrust augmenting ejector.

From a system simulation point of view, the ejector participates in the description
of the aircraft "plant dynamics" as shown in figure 2.

Three Competing Requirements
There are three basic requirements the ejector simulation must meet:
1. The mathematical model must be predictive (not parametric) in nature.

2. Some approximation of turbulent flow characteristics inside the ejector mixing
region must be made.

3. The final system of equations describing the ejector must be amicable to the
NASA /Lewis real-time simulation objective.

To meet the first requirement, only two data sets should be prescribed: (a) the primary
jet "control-valve" setting (with associated thermodynamic data), and (b) free-stream
atmospheric properties. From this, the secondary inlet condition and the ejector thrust
augmentation (as a function of time) are predicted. A parametric method would specify
all primary and secondary conditions (in contrast to the predictive method where the
latter is unknown).

Central to the idea of an accurate ejector simulation, the second requirement
points out the need for some type of characterization of turbulent mixing and
entrainment phenomena in the mixing region; a description of these effects is essential
for transient-type analyses.

The third requirement emphasizes the ejector simulation must not become a CPU
bottleneck in the final STOVL simulation.
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At this point in time these simulation goals are at odds with each other; methods
relying on first principles for the predictive facet of analysis are accurate, but not
executable in real-time.

Perspective on Previous Work

Ejector research goes back about half a century and has resulted in a multitude of
papers on various aspects of ejector performance, optimization, and analytic methods.
Frequently referenced in recent literature is the work of Porter and Squires[1981]
whose survey produced a compilation of over 1600 research papers on ejectors; much
more research on ejectors has been done since that review. No attempt is made in the

resent work to extensively discuss the history of ejector research. Rather, it is more of
interest to note that in the survey conducted for this work (see References) unsteady
flow research focuses on the pulsed ejector flow problem. Such flows are of interest, for
example, in chemical laser applications (see Anderson {1970a, 1970b, 1976], Johnson
[1966], and Petrie, Addy, and Dutton[1985]). No papers were identified that dealt with
transient thrust augmenting ejector flows in a way consistent with a real-time simulation
goal.

Methods of analysis are extracted from either a control-volume or material-vol-
ume formulation. In the former, a set of algebraic equations is (often) based on
quasi-one-dimensional and isentropic conditions, while in the latter a multidimensional
non-linear system of differential equations is obtained. The first generally gives way to
parametric studies while the second is more predictive in nature.

Although bases of analysis can be polarized as described above, there are many
methods of implementation. For any specific perspective on formulation involving, for
instance, a system of differential equations, details of analysis depend on the analyst’s
selection of a solution method, e.g., finite-difference, finite-element, or method of
characteristics. We summarize the extremes of ejector simulation as follows:

1. A control volume analysis is by far the most straightforward and widely reported
method, but, since the system of equations is under-determined (when only the
ambient and 1;:rimary nozzle conditions are given), some key parameters must be
specified. Although the system has potential for real-time simulation, the need to
grescribe, for instance, mass entrainment ratio yields that (in principle) this is at

est a parametric method of analysis.

2. A material-volume analysis draws on the full Navier-Stokes and energy equations,
and provides an opportunity for a fundamental introduction of tubulent flow
characteristics. It is therefore possible to be predictive in nature, but only at a
considerable CPU expense; these machine computations are not likely to fall
within a real-time framework.

Present Approach

In order to generate a predictive method of analysis an empirically based model
for the turbulent interaction region is explored within the framework of a control
volume analysis. This approach provides a rational foundation for the introduction of
steady flow data to "calibrate" an unsteady flow simulation; there is no intent here to
provide a multi-dimensional CFD code based on first principles.

<3>



Elements of Current Work

A methodology for simulating thrust augmenting ejector performance is described
in the present work. Section 3 describes some typical ejector approximations and
considerations related to ejector operation and operating regimes. Since the final
system of equations are extracted from a control-volume formulation, control-volume
equations for an arbitrary ejector control volume are given in Section 4: this enables the
general (time-dependent) surface velocity to be correctly introduced into the system.
Section 4 also expands on the simplification of one-dimensional flow and application of
the equations to the inlet, mixing region, and diffuser.

Section 5 remarks on the simplification offered by a steady-state analysis and
provides a descriptive solution procedure and results from the same. Section 6 looks at
three apﬁroaches for unsteady flow analysis and details the Finite-Volume adaptation
used in the present work.

A test case is examined in Section 6; this leads the the concluding remarks in
Section 8.

Appendicies A-J provide extensive detail on points of analyses traditionall
assumed "intuitively obvious". Such information is contained in the present work for (a§
completeness of documentation of the proposed method, (b) the capability to repro-
duce the derived results, and (c) illustration of inadvertently implicit assumptions.

<4 >



3. PRELIMINARY CONSIDERATIONS
Qualitative Ejector Characteristics

A thrust augmenting ejector is often described as a fluidic pump that employs the
momentum of a high velocity jet from the primary flow nozzle (drive flow) to entrain
and pressurize a secondary (suction) stream; a typical thrust augmenting ejector consists
of four basic components:

1. ahigh pressure nozzle to accelerate the primary flow,
2. aninlet section to accelerate the secondiry flow

3.  anintermediate mixing section to permit momentum exchange between the
primary and secondary flows, and

4. adiffuser to match the discharge pressure (static) with the ambient.

Overviews of the characteristics for this general ejector configuration have been
given recently by (among others) Koenig et. al.[1981], Minardi [1982], and Bevilaqua
[1984]. Also, the proceedings of the 1981 Ejector Workshop for Aerospace Applications
(Braden et. al. [1982]) covers many issues in ejector technology and simulation. It is well
known that the (irreversible) mixing of the primary and secondary streams results in a
local static pressure that is less than the ambient; this is the origin of the suction effect
on the secondary stream. Recovery of the static pressure in the diffuser results in a net
thrust component from the difference of the (integrated) pressure distribution of the
diffuser and inletl. It is therefore of interest in ejector design to contour the inlet and
diffuser so as to maximize the suction effect and diffuser pressure recovery. A typical
ejector wall pressure distribution is shown in Figure 3 (taken from Bernal and Sarohia
[1983]; also see the work of Miller and Comings [1958]). Minimization of nozzle drag
(direct and ram) is also important, as is the need to avoid shroud leakages. An
approximate relation for the ejector system thrust is given by

T = s [ pUn)dA - YL (1)
JTI

where the first term is an approximation for the primary nozzle thrust, the second the
net surface pressure integral, and the last the sum of viscous and pressure losses. The
obvious design goal is to have an ejector where the third term is minimized. In analysis,
the object is to predict the velocities and pressures such that all terms in the thrust
equation can be evaluated; as a practical matter this is not an easy task and is the
impetus for the variety of approximate methods that exist. For example, in a
steady-state analysis the total thrust of the system can be computed from application of
conservation of momentum and mass for a control volume corresponding to the duct
boundary - in this case there is no need to integrate the pressure distribution over the

1 Analogous to the theory of lift on a wing in an inviscid flow, the inviscid thrust in an cjector is attributed
to the net circulation that ariscs when the flow strecamiines in the shroud arc directed longitudinally from
what would otherwise (in the abscnce of the shroud) be at an angle to the centerline.
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wall of the shroud. At the other extreme finite-element or finite-difference methods of
analysis are used to compute detailed flow velocities and pressures along the wall
bounding the flow.

It is evident that (as in many other fluid flow problems) ejector analyses suffer
from a lack of understanding of turbulent flow. Current mathematical descriptions of
turbulent flow yield non-linear, time-dependent equations; non-unique solutions are
also an important consideration. Phenomenological descriptions prevail, however, and
"calibrated" versions seem to simulate flows well. Several ejector studies blend
empirical results, aero-thermodynamics, and control volume (or numerical) approaches
quite successfully in the analysis of ejector performance (see for instance, Salter [1975],
or Tavella and Roberts [1984]). Nonetheless, experimental work continues to improve
understanding (again, an example is the work of Bernal and Sarohia [1983]). Some
conclusions from experimental studies assist in the characterization of ejector behavior:

1. The level of thrust augmentation does not vary noticeably with primary pressure
ratio (the rate at which the primary jet spreads is not a function of its initial
velocity).

2. Thrust augmentation increases nearly linearly with diffuser area ratio, up to an
area ratio in the vicinity of 1.5. Augmentation levels off and/or decreases as the
area ratio is increased further - the duct wall half-angle seems to influence the
particular trend.

3. Ejector performance is very sensitive to inlet losses and the thrust efficiency of the
nozzle, although skin friction losses appear to be very small. The extent of mixing
of the flow discharge (flow skewness) has a significant impact on ejector
performance. See Belivaqua [1974].

4.  Velocity profiles in the mixing region tend to be self-similar.

5.  Additional thrust augmentation can be realized for installed ejectors with the use
of end plates - these cause an otherwise three-dimensional flow to be two-dimen-
sional 8he end plates block flow into the separated region and create a drop in
pressure at the ejector exit, improving performance).

Reflecting on the last remark, the present work does not focus extensively on some of
the aerodynamic installation problems of ejectors described, for instance, by Knott and
Cudy [1986] or Lund, Tavella, and Roberts [1986], though this is not to say that such
effects are unimportant or can be overlooked in future ejector examinations. Rather,
two- vs three- dimensional effects are significant and have considerable bearing on the
interpretation of experimental data.

Of principle interest here is that secondary mass flow entrainment and the extent
of mixing (of the two streams at the ejector discharge station) are closely related to
thrust augmentation, and influenced by (1) ejector geometry, (2) primary jet character-
istics, and (3) physical fluid properties.
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Efficiency and Thrust Augmentation Ratio

Ejector performance is often quantified by computation of the thrust augmen-
tation ratio, ¢, and the ejector efficiency, ». As would be expected, an increase in
thrust augmentation occurs at the cost of a decreased efficiency, so the "optimum"
ejector balances the two (in accordance with the prescribed mission). In the
definition of ¢ it is useful to use as a reference the isentropic thrust obtained from
the expansion of the primary jet to the ambient

o = T systeu (2)

FPRIMARY.IDEAL

Note that when an isentrpﬁic reference thrust is used it is easier to compare the
performance of ejectors with different nozzies.

Several equations to characterize "efficiency” have been used in the literature:

1. The nozzle efficiency is given as the ratio of the system thrust and the sum of
the thrust for the primary and secondary streams under ideal conditions,

2. The ejector efficiency can be measured as the ratio of the kinetic energy of the
ejector efflux to the input energy of the primary nozzle,

3. Aratio of the input momentum to the discharge momentum could be used (for
the nozzle or ejector),

4.  Base the ejector efficiency on the concept of thermodynamic availability ( see
Minardi [1982]),

5.  Compute the ratio of the enthalpy change of the mixed ejector flow to the
ideal change in enthalpy of the primary flow (again, see Minardi [1982] for details
and several versions on this).

Item 2 is chosen for the present work and described in more detail in Section 4.

Characteristic Surfaces

Mass flow characteristics can be expressed in a general way as a function of
stagnation pressure and back-pressure ratios as

/fls I)IS‘O I)u m -

mP PIP.O PIP.O

where it is assumed that ejector geometry and fluid properties are known. Similarly,
the secondary stream inlet Mach number can be expressed as
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Mg, = f( ro P—‘”l‘) (4)
°! Pipo Piro

where P1g is the static pressure of the secondary flow at the point of confluence of
the two streams.

A significant contibution to ejector analysis is the work of Addy, Dutton,
Mikkelson and co-workers [1974, 1981, 1986] who provide a clear view of overall
ejector characteristics through the presentation of three-dimensional surfaces; the
ordinate and abscissa use the arguments of the general relations given above. An
overview of the more detailed discussion by Addy, Dutton, and Mikkelsen [1981]
follows.

Three regimes of flow can be described with three-dimensional surfaces that
have the parameters of equations (2) and (3) as axes; these surfaces are shown in
figure 4. An important feature of the surface is the "break-off" curve that divides the
"supersonic” and "saturated-supersonic" regimes and the "mixed flow" regime. In the
latter, ¢ is a function of the ambient pressure level while the former are not.
Although it is assumed the primary nozzle flow is choked, the distinction of the
breakoff curve is to mark the development of sonic conditions in the mixing region.
Under certain conditions the secondary stream velocity can reach sonic conditions at
the inlet, in which case the flow is choked and the mixing region described by a
saturated-supersonic regime (see figure 4). Subsonic flows are depicted by the mixed

regime.

Thrust augmenting ejectors entrain a second fluid at ambient conditions and
discharge to the (same) ambient a mixed primary and secondary fluid. In this
situation

= (S)

so a subset of the three-dimensional surface of figure 4 which is of interest is the
two-dimensional slice shown in figure S. Because the three-dimensional surface has
been drawn in a general way, no specific intent to exclude or include the
saturated-supersonic region has been made in the description of figure 5. The
secondary flow characteristic surface of figure 6 illustrates that sonic inlet conditions
are associated with the saturated-supersonic regime.

Obviously the problem before us is to establish specific numbers for the axes
of the characteristic curves (as functions of time). Recognize that those numbers
which are presently available (and supported by experimental data) are generally for
steady-state ejector operation and therefore provide little with which to remark on
transient behavior.
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Remarks on the Analytic Approach

In the interest of (eventually) realizing a real-time simulation capability, it is rational to
begin the ejector analysis with the development of (1-D, integral) control-volume
equations for a partitioned ejector; nomenclature for an arbitrary control volume is
given in figure 7. This type of analysis forms a general mathematical structure within
which methods for providing a transient capability and imitation of the turbulent
interactions can be explored.

To be sure, there are much more capable frameworks of analysis, but they have
only been explored for steady flows and example calculations indicate the approaches
are extremely CPU intensive. Shen et. al.[1981] investigate the high secondary mass
flow scenario using finite element analysis. Hedges and Hill [1974] discuss finite-differ-
ence solutions and review the integral boundary layer analyses of significance.

Considerable attention is paid in Appendix A and B to the development of the
integral equations since (a) the nature of the time-dependent terms is important, (b) a
proper account of a control volume moving in space is required, and (c) an open
discussion of "intuitively obvious" quantities {presented without derivation) is without
rigor. The development of these equations is predicated on a point of view appropriate
for ejectors - "appropriate” is given here by those arguments often presented and
weathered scrutiny in the literature. Some elements of that point of view are discussed
below:

Constant Area Mixing Section

The ejector shown in figure 1 reflects the assumption that the mixing region
has a constant cross-sectional area; this selection is intentional and made on a
theoretical basis. An alternate configuration is the "constant-pressure” ejector in
which it is assumed the area of the mixing region varies such that, in the
one-dimensional case, the integrated static pressure is constant over the mixing
region cross-section. For this configuration, however, determining the necessary
mixing section area distribution and the high-probability of off-design operation are
problems.

As it turns out for the traditional steady-state control volume analyses, the
constant-area and constant-pressure formulations predict comparable performance
(see Dutton et. al.[1982], Dutton and Carroll [1986]). In fact, the constant area
formulation leads to a doubled value solution in which the mixed flow is either
subsonic or supersonic; the solutions for the Mach number are related by the
relation for the Mach number across a normal shock. Selection of a solution is based
on compliance with the second law of thermodynamics.

Minardi [1982] provides a discussion of considerations for which the con-
stant-area geometry is a necessary, but not sufficient, condition for the analysis. This
leads to the conclusion that all possible solutions for the mixing region will be
obtained with the constant-area case, even though certain solutions are not likely to
occur for typical ejector configurations.
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Adiabatic Ejector Walls

It is almost a universal assumption in theoretical ejector studies that the
ejector walls are insulated; this allows the surface heat flux term in the energy
equation to be dropped. As will be discussed in detail later, this is not immediately
an assumption that the flow is isentropic. If we consider the arguments on the
creation of entropy in Appendix B,

7 2
Ds v.(W‘l) - %(YI,_) > o (6)
Dt pl p\ 1

then entropy changes exist as long as the fluid is subject to viscous dissipation. The
combination of adiabatic ejector walls and inviscid flow provides:

Ds

ot = ° e

from which a convenient steady flow integral arises:

—frsdm = 0 (8)

This relation is most often employed in the analysis of the inlet and diffuser. Since
Bernoulli’s equation can now be used for the description of pressure across those
regions an alternate use of the entropy balance is realized; generally speaking, the
entropy balance becomes a condition on the simultaneous solution for the equations
of mass, momentum, and energy (mechanical).

Inviscid Interaction Region

For ejector flow conditions where the static pressure of the secondary flow is
less than that of the primary flow (Pg; < Ppj), the primary flow expands and
interacts with the secondary flow to provide the interface boundary shown in figure
8. Note the formation of an "aerodynamic throat", that is, a minimum cross-sectional
area downstream of the inlet associated with the boundary of the inviscid interaction
of the two streams. If the secondary flow is subsonic upstream of this station, then
the peak flow velocity at the constriction will be at or below sonic conditions. The
"supersonic” operating regime is described when Mg>=1, and the "mixed" region
given where Mgo<1. At very low secondary flow rates the secondary flow is
effectively "sealed off" from the primary flow. A number of investigators (Anderson
[1974a,b], Addy and co-workers [1974, 1981]) have taken advantage of these
"partitioned" flows, as originally characterized by Fabri[1958]. Of interest here are
the admission of the following assumptions for this "inviscid interaction” region:

1. The primary and secondary streams are distinct and do not mix between the
point of confluence and station 2.
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2. Viscous interactions occur along the interface of the two streams (mechanism
of energy exchange between the primary and secondary flow).

3. Each stream is treated as irrotational.

4.  Although the average pressure of the streams is (potentially) different at each
streamwise station, the local static pressure is equal at the boundary.

In the work of Addy et. al. [1981] both streams are treated with an isentropic flow
assumption (mixed and supersonic regimes). Anderson [1974a] allows that the
secondary flow is isentropic, but determines the primary flow field from the method
of characteristics (in his treatment of supersonic flow only). Quain et. al.[1984] relax
the assumption that the secondary flow is isentropic, but the discussion of results
from that work is not possible at this time (the paper is written in Chinese, abstract
in English).

Implementation of an inviscid interation region may simplify the analysis of
the mixing region, but this does not relux the requirement of an iterative solution
methodology. Nonetheless, the use of this modelling approach offeres some analytic
simplification and is worthwhile to pursue if the conditions which precipitate the
approximation can be identified in advance.

The low-secondary-flow rate regime is only properly treated with a two-dimen-
sional flow field analysis. As such, the euphoria surrounding a one-dimensional
approach is mitigated by these types of flows and asks that the computational
burden be assumed (for the correct analysis) or the degredation in solution accuracy
announced.

Thermodynamic Considerations

Some elementary thermodynamic assumptions are often made in ejector
analyses; identification of them here is appropriate:

1. The state principle of thermodynamics provides that, for a gas, a given
thermodynamic variable can be described in terms of two thermodynamic
properties.

2.  Below a gas temperature of (approximately) 600K, air has essentially a
constant specific heat, and therefore qualifies as a perfect gas; for generality,
though, an ideal gas would be used.

3. For a perfect gas the entropy and enthalpy of the gas are expressible as a
function of temperature only.

4.  Application of Dalton’s law of partial pressure to a constant volume mixing
process yields the properties of the mixed flow at station 3 (see Appendix F).
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Rarely does it come to pass the need to distinguish between an ideal and a perfect
gas; both are described by the equation of state, but the specific heat of an perfect
gas is constant, but in an ideal gas the specific heat is a function of temperature. This
minor point can have significant impact on computational speed if temperature is
unknown and the specific heat then extracted by an iterative method.

Summary

In the present simulation effort, an ejector with a constant area mixing region and
adiabatic walls will be used to provide thrust augmentation through the mixing of two
ideal gas streams. A phenomenological apFroach is taken to the turbulent interaction
problem, consistent with the objective to formulate a system description amicable to
real-time simulation.
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4. CONTROL-VOLUME EQUATIONS FOR ONE-DIMENSIONAL FLOW
Overview

A control volume description of the ejector is perceived to be the most efficient
method of analysis for the real-time simulation goal of the present work. This section
outlines the application of the general control volume equations (developed in
Appendix A) to the ejector shown in figures 1 and 10. Note the ejector is partitioned
into an inlet, mixing, and diffuser region. Development of the mass, momentum, and
energy equations for each component intends to provide three results: (a) a summary of
the integral form of the equation, (b) a form useful for the transient ejector analysis,
and (c) the version obtained if a piecewise-constant velocity is assumed at stations of
inflow and efflux. Prior to those developments some remarks on the one-dimensional
flow approximation are made below.

One-dimensional flow approximation

Compressible flow in channels is often treated in (practical) control volume
analyses under the assumption that a quasi-one-dimensional flow exists; the basic
simplification offered is that velocity gradicnts can occur along (not across) the
streamwise axis of the channel (longitudinal axis). See figure 9.

A real-flow velocity profile is not (necessarily) symmetric and would reflect the
presence of any viscous, blockage, and Reynolds number effects. In the absence of
separation the real flow in the vicinity of the boundary must be parallel to the wall. In
the present work these effects can only be accounted for as far as the continuity
equation allows.

Analysis of "traditional" one-dimensional flow yields that the accuracy of this
assumption depends on the axial gradient of the cross-sectional area. If d4/dx is small
the assumption is well received (For the analysis of a stream-tube the "approximation” is
exact). It is worth noting the comparison given by Thompson [1972] between nozzle
data and the result for a one-dimensional flow analysis.

Particular attention should be paid to the generosity of the one-dimensional flow
assumption for the expansion of the primarv jet issuing from the nozzle. There is
considerable breakdown in the approximation - and therefore in the accuracy of the
analysis - when the secondary static pressure is significantly less than that of the primary
jet. Recognize, of course, the extreme subsonic case (discussed previously) where the
secondary flow is effectively "sealed-off' and the flow field must be treated as
two-dimensional (recall figure 8).

Often it is assumed that the one-dimensional flow is also piecewise constant; this
allows for multiple streams of constant one-dimensional velocity to be considered and
provides for very convenient forms of the control volume equations.

Some accommodation of real-flow effects can be provided through a "skewness
factor" which mitigates the asumption that the discharge velocity from a duct is
completely mixed. As a practical matter, such an account is particularly useful for
examination of ejector configurations where experimental data is available.
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Skewness Factor

In order to include (partially, anyway) non-ideal mixing characteristics in the
ejector analysis, there is often introduced a skewness factor for the flow at the exit of
a mixing region and for the diffuser exit. It is assumed that knowledge of friction
losses in the shroud and the value of the skewness factor are adequate for the
characterization of the net effects of non-ideal mixing (even though local flow
details cannot be extracted).

Consider the spatially averaged velocity given by

1.[
<p> = — dA |
v y v (1)

for the definition
B = ([Uzd/i) / (<vu>?A4) (2)

If v is uniform, the skewness factor is unity; in a non-uniform flow g > 1. To get a
feeling for the magnitude of 5, Bevilaqua [1974] notes that a typical ejector inlet
region has a skewness factor on the order of 1.8, while the skewness factor at the exit
of a (well-designed) mixing duct is approximately 1.02.

The skewness factor is constant for self-similar velocity profiles.

Salter [1975] discusses a theoretical approach to the prediction of the skewness
factor, based on the turbulent jet theory of Abramovich [1963].

Continuity

For a control volume moving through space with velocity U(¢) the continuity
equation is
d
& pav + $pu-u)ynda = o (3)
dtJv A
Define at any instant in time the mass contained in the control volume by

m, = fpdl/ (1)
v

and introduce the relative velocity

v = u-U = wi (S)
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where the unit normal is defined as positive outward from the surface of the control
volume. Also, define the mass flowrate past station k as

o= = [ o (v nyda 6)

Emphasis is placed on (a) the use of the relative velocity, and (b) the presence of the
negative sign. The impact of the latter is that an inflow 1s described by a positive mass
flow; since

(veon), = v,(-t-1) = -v, (7)
then for an inflow

me = [ puda (8)

and for an outflow

(v )., = Ve (L0) = Uy, (9)
My, = ‘f pu,dA (10)
Ax

Returning to the continuity equation, substitution yields

d

——{m = m 11
gilmal = 2 m, (1)
This has the intuitively desireable result that when the inflow exceeds the outflow, the
accumulation of mass is a positive quantity. Although superficially this may appear a
trivial result, reflect on a formulation involving u instead of v in the definition of the
mass flowrate; the impact on the latter is significant.

Introduction of the skewness factor requires the assumption of a constant density
over the cross-section,

m = fpukd/l = ﬁf v, dA = p,<v>A (12)
Ay A

Integrals dissapear on the right hand side of the continuity equation if the density
is considered piecewise constant; the mass flux accross station & is
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M = (pvA), (13)

and therefore

am.,,
dt

= (pvA)y — (puA)., (14)

Momentum

Application of the integral momentum equation to an ejector with adiabatic walls
and where gravitational effects are neglected provides

s pudV = —jgpéé(gt-l_/)'ﬂdﬂ+j§(l-Q’dA - fn'(pl’)d/l
dtJv' — A A A
(15)
Introduce the relative velocity, then
d .
— | p(u+lU)HdV = —j{p(yﬂl)y-@d/l - j{r_z-(p! Yd A
dtJv = A A
+ fg-g'cm (16)
A

Define the net force acting on interior surfaces (thrust) to be characterized by the sum
of the surface integral of the deviatoric stress tensor and the interior pressure forces

F o= ;{a-g'cm - $n-(pDas (17)

It is important to note that no shear stresses are assumed to be acting over the inlet or
outlet regions. Also note that the area /" represents the (fixed) interior surfaces of the
ejector unit - those are the areas responsible for the exchange of forces (between the
fluid and ejector surfaces) to provide the system thrust.

Expand the time derivative in the momentum equation

d (lf df
— v+ U))dV = - wwdl + - Uvdv 18
dt vp(* v) clt v{ ¢ dt vp”" ( )

and recognize
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(19)

d d
— vdv = —(Um
dt Vp'— dt(~ CU)
Recalling that the reference velocity U is constant over the surface (but remains time
dependent), then
dt*— % - dtl ot (20)

Also
-$ s yv-ndA == pu(um)da-U § purnds
A A A
(21)

dm,
- ¢ pu(u-n)d A+l - -
ﬁp(— 1) Todt

The momentum equation becomes
dl/
= (22)

gfpvdl/ + m,,
dtJv' — il

—fpv(z-n)(lxl - %n-(pl)d4+l-"
A A
where A implies those surfaces at the inlet and outlet of the control volume, not the

internal surfaces used in the definition of F .
Important Note: The volume integral represents the time rate-of-change of the

momentum of all particles inside the control volume at an instant in time. It cannot be
converted into a surface integral and requires some estimate of field conditions in the

ejector mixing region.
Some simplification of the momentum equation results from a piecewise constant
(23)

velocity, density, and pressure assumption. In this case

—fpv,(y@)d/l = Yum,
A k
(2:1)

= _Z:/)k[lk’qk
K

~§ n-(pioyds

and therefore
(25

d/' dl ~ -
— vdl/ + = E L, - E P A + f
di VP_ m,, dl 4 Uy, 4 K Ay A
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An alternate modification involves the skewness factor. For a uniform cross-sec-
tional area,

fpzﬂdA = pB<vu>%A

Briv<v> (26)
then substitution in the appropriate locations in the momentum analysis above provides
the desired result.
Energy

Ejector analyses typically assume all surfaces are adiabatic, but (as mentioned

earlier) this is not immediately an implication that any of the transport processes are
isentropic. With this in mind the control volume formulation of the energy equation is:

gf(/oH—P)olV = pr-n_d/l - fpll(u—U)'mM (27)
dtJy y A

Note the absolute velocity participates in the definition of the stagnation enthalpy

2

H = h + — (28)

&

From this the ideal gas assumption yields

pH = pc,T, (29)
then

a‘%fv(pcpTO—PJdV = f/g/)_l_{-(;d/l - j€p<-p'/'0u-@(1,4 (30)

which is the desired integral form.

As before, a piecewise constant velocity, density, and temperature simplifies the
equation

d . : - e
aj;(pcpTo—P)dV = U}_,Pk/lk(,lu'@k) + ZHkmk(!u'Qk) (31)
X 3

but does not eliminate the volume integral on the RHS.
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Entropy

In integral form the entropy equation acts as a condition on the solution of the
mass, momentum, and enegy equations; from Appendix A,

d 1
—f psdV + jgpsy-gd/l + f:q-nd/i 2 0 (32)
dtJv A AT~ 7~

Acknowledging that the last term vanishes by virtue of the adiabatic ejector assumption,
a non-zero entropy balance arises from viscous dissipation.

If the mass flowrate is introduced
d ,
—fpsdl/ - jgsdm 2 0 (33)
dtJv A
then the uniform one-dimensional flow assumption yields

C%fvpsdv - Ysm(i, n) 2 0 (34)

k

Summary of Basic Equations

Four basic control volume equations form the foundation of the analysis of the
transient ejector:

Mass

d .
a{mcu} = ka

k

Momentum
df dl jé' _‘;; .
— vdV + m,,—— = - v{v-n)dA - n- NdA+T
dt pv- cy C“ Apl(“ L )( A_ (.D_)( o
Energy

d
oy (pcp'l’o— P)dV = jgpl/ ndA - jg pc,Tov-ndA
v A

Entropy
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a psdV - jgsdrr'z 2 0
dtJvy A

For the momentum, energy, and entropy equations, the simplified one-dimensional
relations are:

d dl S , C .
dt VPQdV + mcuE? = %,Uk(,lu"."k)’”k - }r[)k,nkAk + !

L (pe,To-Plav = UY Peadiyon) + Y tiamgliy o)
dtJy X X ‘

d e
afvpsdl/ - Zsm(ty (;) 2 0

An important goal in transient ejector analysis is finding an accurate approximation to
the time dependent volume integrals on the left hand side of each equation.

Remarks on Supplementary Equations
Overview

Application of the general, one-dimensional flow, control-volume equations to
the ejector of figure 10 is intended to provide a framework for ejector performance
prediction in terms of the primary nozzle flow, initial conditions from which the
secondary fluid is drawn, and ambient conditions. In application to the mixing
region, the assumptions involved are critical since it is within this region that the
most complex physical phenomena occur.

In anticipation of the section 6 discussion on methods of solution for the
complete (time dependent) one-dimensional ejector equations developed above, the
simplification of steady-flow is explored in section 5. That excursion is of value in
situations where a quasi-steady flow can be assummed to exist. That discussion also
addresses some concepts to closure common to the unsteady flow problem
formulation. This allows section 6 to focus on the difficult issue of evaluating the
time-dependent volume integral terms. A summary of the solution options that exist
and the reccommended approach in the provision of a complete system of equations
is then made.

The control volumes used in the applications to follow are illustrated in figures
1 and 10. Since it is assumed (for this phase of the work) that the primary nozzle
flow characteristics are known, no control volume is drawn for it. An important
assumption is that the nozzle and the shroud are adiabatic - as discussed earlier this
is not (immediately) an assumption that the flow is isentropic; the latter is allowable
only if viscous dissipation is absent from the flow (as you would have, for instance, in
an 1deal, irrotational flow).
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To set the stage for application of the control volume equations to the ejector,

some remarks on the character of some unknowns and the working medium follow:

1.

The state principle allows that local thermodynamic states are expressible in
terms of two thermodynamic variables: in the present work the static pressure
and temperature have been chosen.

The assumption of an ideal gas provides the entropy and enthalpy are
functions of temperature only. Density is given as a function of T and P
through the ideal gas law.

The local mass flowrate is defined in the one-dimensional case as a function of
velocity, temperature, and static pressure.

It is assumed that the force on the shroud can be constructed as the sum of
empirical relations for duct flows, including such effects as losses due to
expansion or contraction of cross-sections. The empirical constants will reduce
the unknowns in the function for F to velocity, temperature, and static
pressure. Geometric characteristics are assumed known.

In general, entropy is employed in arguments related to the admissability of
solutions, not in the direct solution for specific velocity, temperature, and
static pressures.

Velocities at the inlet duct and primary nozzle discharge are uniform and
one-dimensional, but distributions internal to the mixing region are express-
able in some "appropriate” self-similar form.

The default unknown velocity is the relative velocity, v, since the absolute
velocity, u, and the frame of reference velocity, U, are related by v = u - U. For
the present work it is assumed that U is known. Actually U is generally not, but
if the ejector GDE’s are coupled with those for the aircraft then U can, in
principle, be determined (in general, as a function of time).

Possible existance of shock waves is recognized, but an account here would
require they are normal and stationa with respect to the shroud (diffuser,
inlet, and mixing region) frame-of-reference. In the present work subsonic
flight is assumed for the operational envelope the ejector participates in.

We suspect in the primary flight mode the ejector is involved in will not be
supersonic flight.

Supplemental Equations

The framework of analysis is constructed through application of the con-

trol-volume equations to the inlet region, mixing region, and diffuser. The assump-
tions of the previous section introduce the following supplemental equations:

m = pyvnl
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p = P/RT

v = u - U
F = F(P,T,v)
h = h(T)

s = s(T)

The principle unknows at this point are the following (field) variables: velocity,
v(x,t); static pressure, P(x,t); temperature, T(x,t). The steady-state solution for these
unknowns is discussed in the next section; Section 6 describes the approach for the

transient situation.
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5. STEADY FLOW ANALYSIS
Overview

Although it is the intent of the present work to focus on unsteady ejector flows,
the steady-flow solution methodology is of interest for several reasons:

- The steady-state solution is the starting solution for the unsteady analysis,

- Many of the subroutines generated for the steady-state version of the program
are common to the transient program; a successful steady-state solution is a
useful check on those routines,

- The steady-state ejector performance program can be a useful theoretical tool
for interpreting data from the NASA Lewis PLF.

Presentation of typical steady-state ejector performance equations highlights the
mathematical benefits of disposing of time-dependent terms in the ejector analysis and,
by default, provides the system of equations one would use in a quasi-steady flow
analysis. For instance, the section 6 assumption of a quasi-steady inlet and diffuser flow
means the steady-state inlet and diffuser equations discussed below are applicable.
Additionally, many details associated with the execution of the general ejector
“problem"” (and coincident with an unsteady flow analysis) are easily illustrated with a

escri{)tion of the solution of the steady flow equations. The present work draws
artially upon the discussions of Belivaqua [1974], Salter [1975], and Alperin and Wu
1983a,b].

System of Equations

In a steady-state ejector flow scenario, time-dependent control volume terms
would not be involved in the system of equations. Recalling the general system and
auxiliary equations presented in section 4, it is important to note the steady flow
assumption leaves three governing equations and (only) nine unknowns for the
description of the mixing region. Although there is some variation in specific analyses,
closure to this problem is usually obtained by prescribing one or more of the following:
1. confluence static pressure ratio at the inlet,
2. primary and secondary inlet velocities,
3. static pressure at exit,
4.  stagnation temperatures at the inlet.
Often, if there is not a direct prescription of, for instance, the stagnation conditions at
the inlet, an isentropic flow is assumed between the (assumed known) free-stream

conditions and the inlet cross-section, thereby facilitating calculations of the inlet
temperature and pressure.
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For the present steady-flow analysis, the three conditions for closure are obtained
by J)rescribing (a) primary flow inlet conditions, (b) static pressure at the diffuser exit,
and (c) an isentropic inlet and diffuser. A detailed discussion of the system of equations
follows.

Mixing Region

Considerable simplification of the system of equations is realized by invoking
the steady-state assumption; the system is given by:

Mass:

0 = myp+m,s—my (1)
Momentum:

0 = UlelP+UISmlS—B<U3>m3+(l)li’_PB)A3+E (2)
Energy:

O = mpHo p*tm sHo s—myll; (3)

The entropy equation remains a condition on the solution, as discussed earlier (also,
see Appendix B). Some assumptions often applied to the system are:

1. All skin friction and blockage losses are neglected.

2. The primary flow is fully expanded at the point of confluence of the two jets
(equal static pressure at the inlet region, station 1).

3. Specific heat of each gas stream is assumed equal.
4.  The ejector is stationary in space (test stand set-up).

S.  Gases are assumed thermodynamically perfect (constant specific heat) and
described by the equation of state.

Only assumptions 1, 3, and S are used in the present work.

Non-dimensionalization of the system of equations above clarifies the partici-
pation of each equation in the solution; related manipulations are outlined below.

i. Continuity

A useful non-dimensional form of the mass flowrate equation is (see
Appendix G.6)
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, _ 172
M (RTHY'? = M{y(l+y21M2)>
= [e(y. M) (4)

where it is understood that the specific heat ratio is known or can be computed
from Dalton’s law (Appendix F). From conservation of mass

M, + mg - my; = 0O (5)

in non-dimensional form

mgy mp ms e
- + = (e
PpAp PpAp PpAp P, A
. -1/2 .
= (RPro.P) fo()’r""’?)(l+l‘)

If the mass flowrate equation for station 3 is normalized by the primary flow
conditions

maA _ PsAafs(Ya-Ma) 7)
PPAP PPAP \’R3TO,3

then by comparison with the result derived above

\

ﬁ R:JTO.GfG(YP’M‘Di(l-i»'u} (8)

P
Pp Aj RPTO.Pfﬁ(Y:;.M:}

the entrainment ratio itself can be expressed as a function of fg in a similar form:

o e et [T ) "
mp PpAp RSTO-«9/6(YP'MP)

so that the static pressure ratio is given by

P A R, T s M)
s S rpo.r f(’(,,,y S ) : (10)

}’5 Ap RsTo.s};(;’rP'MP)u

In general, the stagnation pressures are assumed to be related isentropically to
the static pressures at the same station by the function
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_ y/y=-1
P, - {1 . ”2”M2> P = fo(y.M)P

then the stagnation pressure ratio is

In non-dimensional form, the momentum equation is given by

PrA, PrAr P, P, P, -0
The velocity terms can be written
pvt
P RT
so that the momentum equation can be written
(L+y, M) l,éj—j:—i{lwsMi} - ;—f%fp{HﬁyaM%} -0

Pqy s P 3(Y5-Ms)

Po.p pfalyr Mp)

ii. Momentum Equation

2 2 2
PsAs P3Ay ppUp Ppus P3<Uz>
+ - + + -

Re-arrange the previous result for the static pressure ratio

PsAs _ /RsTs,ofé(YP’MP)“
PpAp RPTP.Ofc()VSvMS)

so the momentum equation is

then

0 = (1+y,M})

{RS'[‘S.O>”2./6(YP’MP)
fcs(Ys»Ms)

(1 )<R37 ' > (1 ByaM])
- + 1) —— Bl N (I 4
! ReTpo /6()’3-/\/{3) Yol
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p(1+y,M3)

(1)

(12)

(13)

(14)

(16)
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R,T, 172
0 = f7(YPvMP) + #<R:TP§> f7(stMs)
Rarra,o 172
S e Sy M) (18)
where
[y MYy = (V+BYM?)/[(y.M) (19)

The solution for M3 is now given in the form

R.T -172
fr(vaMs) = {RT} ) (v M)
/vzs.,,glo 172
+ ll{}\,Pﬁ[.P‘o'} /7(73-M5)} (20)

For given primary and secondary conditions the right-hand-side is a constant

fo(ys My)=K, (21)

An expression for M3 is derived by re-introducing the definition of the function
f

1+ ByM? = KIM(y{lJrX—;‘;»JMQ})”z (22)
since

(1+ByM?)* = 1+2ByM*+p'y’M" (23)
then

L+28y M2+ B2y?M* = KfM:y+l\"fM4y(%) (24)

This is re-arranged to yield
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; -1
1+(2/3y—K?y)M“(ﬁ*y"’—K?y(y? ))M = 0 (28)

SO
A = Bzyz—k’?y(zfz l) (26)
B = 2By-Kiy (27)
c = 1 (28)

The solution for M3 is therefore obtained from the solution to the quadratic
equation

A(M2)? « BMZ «+ ¢ = 0 (29)

which is given by

-B+JB2-4AC

M2
3 2 A

(30)

The root is expressed in functional form as

My = f.(B.y,.K)) (31)

iii. Energy Equation
Introduction of the entrainment ratio in the energy equation yields:

mg
€aTso = ——EpTp o+ 65T (32)
3 3.0 y P P.O . S 5.0
ms msy

where ¢ is the specific heat at constant pressure. Rearranging,
mep Cp_.

Cs .
T = —( —7 +u—7T 33
3,0 rr'lp+n’ls<€3 PO '163 5.0} ( )

and therefore
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T 1 ép T 5:;7.
= + - y;
3.0 (l+ﬂ)63 P.O ué- 5.0 (3})

Expressed as a ratio:

Ts.0 1 6P< CST$“>
— 1+

Tpro 1 +pucéy

Cp7 P (35)

iv. Inclusion of Frictional Effects

Salter [1975] provides corrections for friction effects through an equivalent
pressure loss:

apP, = (fLpv®) /7 (2D,) (36)

where f is the friction factor and Dy is the hydraulic diameter. Also, a
momentum correction factor, Kj,,, is applied to the mixing region exit to account
for incomplete mixing of the primary and secondary streams; use of the
momentum correction factor means the momentum equation is to be written
explicitly in v (rather than in terms of the mass flow rate), the result:

0 = pAlPU?P + pAlSU?S - /\’,,,p/1311§
+ (Pys=P A, - AP, A, (37)

Bevilaqua [1974] and Kentfield [1978] take a slightly different tack and invoke an
incompressible flow assumption to simplify their analysis (they also remark on
the error introduced in this approximation).

v. Mixing Region Equation Summary

Solutions for the pressure, velocity, and temperature at station 3 are
obtained by analysis of the mixing region; since conditions at the primary station
are given, the field variables at station 3 are functions of the unknown conditions
at station 1S.

Manipulation of the equation of continuity in conjunction with the
equation ot state yields the ratio of pressure at the mixing region exit and at the
primary nozzle discharge:

Py Ap R Toafe(vaMP)
== (1+p)
Py Aj R TOPfo(Ys'M\)

this is implicitly a function of conditions at station 1S, via the entrainment ratio,
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g = mg _ PsAs RPTO,be(YS’MS)
m, PPAPVRSTO,Sfb(Yp;MP)
From the momentum equation, the Mach number at station 3 was derived in

terms of the Mach number at the primary and secondary flow conditions at
station 1,

M, = f|7(B-Y3'K3)

Through the energy equation the relation between the stagnation temperature at
station 3 and the stagnation temperature at the primary and secondary stations
was found to be:

T3, 1 EP{ Esrlvs,o}
= —{ P+
Tro (l+pu)é, CeT po

In summary, the prediction of P3, v3, and T3 is a function of Pg, Mg, Tgq ,
and the pressure matching condition at the diffuser exit (more discussion on this
point later). Analysis of the inlet region will exchange the unknown pressure,
temperature, and velocity at station 1 for those at infinity.

Recall that, for this particular predictive situation, the secondary inlet
conditions are not known in advance since the secondary flow conditions are a
consequence of conditions in the mixing region, not a cause for the same. No real
reduction in the number of unknows is gained from the addition of these
relations but is a necessary development for the complete system of equations.
Relations for the diffuser are similar to those for the inlet and provide closure
for the final system of equations.

Here, it is of benefit to realize that for the thrust augmenting ejector the
static pressure at station 4 should, in general, be equal to that of the ambient.

The system of equations for the inlet and diffuser are discussed next.
Inlet

The inlet is given as the region between infinity and station 1S; application of

the principles of mass, momentum, and energy to that region are described below.
As a first approximation isentropic conditions are assumed to prevail.

i. Mass
For a single-stream flow, the mass flowrate is unity,
ms

— = 1 (38)
mpe

< 30 >



so that

pSUSAS = pwvaw (39)
or (see Figure 1)

PstsAs = povoA, (40)

since the characteristic area at infinity is undefined.
ii. Momentum

A balance of momentum for an ideal nozzle flow provides

PsAs + meuy = P_A, + m,u, (41)
then

P mev Aw Mol »

Y AL LS ) A (42)
Pm PSAS /]5 Pm/im

PsA L+y M2

sats { }’_ 2} (43)
PuAe l+ys M5

An alternate expression for this ratio is given in terms of the mass flow function,

f6

PsAs _ <6i‘b£}”2f°(y“’_“wf‘?) (44)
fc(YS-Ms)

but for an isentropic flow it can be shown the two ratios are not independent.
iii. Energy

Conservation of energy provides the simple statement that the stagnation
temperatures in the free-stream and at station 1S are equal

To. = Ty (45)

this result relies on the adiabatic inlet assumption. If local properties are related
to local stagnation conditions isentropically, then
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1
T, = T(1+%M2) (46)

from which
T, T, 1+ M2
Te  Tou\ 17 'y2
fz(Yme)
) fz(YS»Ms) 4

2

The assumption of isentropic flow simplifies the integrated form of Gibbs
relation to

T P
Y [ =] - ml=] = o0 (48)
y-1 To Py
and therefore
P P T,
R (49)
Puo Pou_() Tm
where
TN = T (50)

Since the ideal gas law provides that

M) ;‘
Ps 1 51
P. T. (51

it is evident the stagnation pressures must be equal for an isentropic flow

Pso = Puy (52)

and so the static pressure ratio is

Ps _ falya.M.) (53)

P fa(YSvMs)
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This is a slightly more convenient expression than that derived from the
momentum equation since the area ratio is not required in the present result
(but an isentropic flow assumption is).

iv. Remarks

In the general case of analysis the free-stream velocity, static pressure, and
static temperature are known so the stagnation temperature and pressure can
therefore be computed. If isentropic flow conditions are assumed to exist
(adiabatic ejector, frictionless flow) then the stagnation temperature and
pressure at station 1S are equal to those in the free-stream. When the velocity at
station 1S has been determined, the static temperature and pressure can be
computed.

For situations where the isentropic flow assumption is not valid, we return
to the momentum equation and account for frictional effects. As a first
approximation of the "answer”, an incompressible flow is assumed to exist.
Recognize that in such a case, the differential formulation of momentum is
preferred since Bernoullis’ equation can be extracted. This provides an equation
applicable to any inlet streamline. The analysis of Salter[1975] introduces a
correction factor for real-flow effects with the use of an inlet loss coefficient, K1,
and the loss due to the impedance of the nozzles to the free-stream flow, Cp,

| ] Anozzlo -
Pis = Pu_ip( ?s‘Ui)_EPU?)(Kl’“CD Ao—) (o4)

Given the free-stream velocity, conservation of mass is used to find the first
approximation to the secondary inlet velocity,

L (55)

and therefore

p A\
P15=Pm‘§vi((h—l's) ‘l) (56)

Diffuser

Pressure recovery in the diffuser is a function of the area ratio, and becomes an

static pressure is (generally) intende

important parameter in ejector desifn. For the thrust augmenting ejector the exit
to be that of the ambient, but real flow effects

may dictate otherwise. Nonetheless, in principle the overall (isolated) ejector
pressure ratio is unity.

Equations governing the conservation of mass, momentum, and energy in the

diffuser are similar to those for the inlet, but a brief discussion is presented below to
highlight the pressure matching condition at the diffuser discharge.
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i. Mass
For a single-stream flow, the mass flow rate is unity,
Ma _ (57)
My
ii. Momentum
In the absence of frictional effects, the adiabatic diffuser is characterised by

P,A 1 +y M3
s e _ 3 :23 (58)
P3As l+y,M;

In this result the Mach number is modified by the mixing effectiveness parameter
when an account of non-uniform mixing is desired.

iit. Energy
As before, the adiabatic diffuser assumption allows that

E fz(Ya’Ms)

e (59)
T, fz()'«a , M4)
from which the additional assumption of isentropic flow permits
P M
Fa _ fa()’s 3) (60)
P fa(}'/; ) M4)
and since
Poa=Fos (61)
Py=P, (62)
then the exit velocity can be computed from
Po,
folyaMy) = == (62)
4
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iv. Remarks

For the assumption that the discharge pressure is equal to that of the ambient we
find that the momentum equation can be used to predict the "appropriate” exit
velocity for the given station 3 conditions. Recognize here that the station 3
condition reflects on the original velocity assumption at station 1S. The correct
assur?ption will be that for which the mass flow rates at stations 3 and 4 are
equal.

As a first approximation to the compressible flow solution the use of an
incompressible assumption is of convenience; Bevilaqua [1975] and Salter [1975]
provide more detials on those approximations.

Primary nozzle conditions
All of the thermodynamic and flow variables required to describe the primary
nozzle discharge can be derived from three input conditions: mass flowrate,

stagnation temperature, and static pressure. A discussion of the relationships
involved - including an account for choked flow - is given below.

i. Primary nozzle pressure ratio

Manipulation of the mass continuity equation provides the relation

m y P \[ y-1.,
Toe =M 1M 63
A R,/T0 2 (63)

P _ y/y-1
Po o (1YL (64)
2

It is intended the nozzle pressure ratio be expressed in terms of the mass
flowrate, stagnation temperature, specific heat ratio, and nozzle geometry. To do
this, the equation above is rearranged so that

2

? RT -1

m o [Rio _ Mz(l+y Mz) (6%)
PAN 'y 2

Since the isentropic pressure ratio gives the Mach number as

) 2 P,V )
M = — -1 66
(Y—l){(l’) } (60)

then
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PZAZY 2

PO y-i/y PO 2(y-1/y)
e

The nozzle pressure ratio is extracted from the solution to the quadratic
equation; the result is:

y-1/y , 2 _ 172
Po I T ik TF’R(Y ') (68)
P 2 2 P2A%y\ 2

from which we establish the relation (notice the "+"

(Po) (o rr'z?'l‘oR(y—l) EANAA .
)T\ 2 PPaty\ 2 (69

This equation is valid for choked and unchoked flow; in the latter situation,
however, there arises a convenient relation from the concept that the mass
flowrate per unit area is a maximum for choked flow and coincides with a Mach
number of unity.

A solution for the nozzle static pressure as a function of stagnation
pressure, stagnation temperature, and specific heat is given in Appendix J.

Returning to the first equation of this section and eliminating the static
pressure from the RHS provides

AN
PV -y VR O S (A 7/ 70
y R (70)

then for a Mach number of unity

e 5 Nrei/y-rp
- = \/X( ) Ll (71)
A R\y+1 \/'I'o

For air at standard conditions

y = 1.4

t- b
R - s3.304 112
b, R

we substitute and obtain Fliegners’s formula
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m P
= = 0.532= (72)
vTo

The nozzle pressure ratio is then

Po .88m('f—5)

Po Po\ Ap

(73)

which is in a convenient form for hand calculations.
ii. Primary nozzle thrust for isentropic flow

From the steady-state momentura equation the thrust of a nozzle, choked
or unchoked flow, provides

T = m,v, + AG(PO—P“’) (74)

Introduce now the idea for maximum thrust in which the area ratio is such that
the exit pressure is the same as that of the ambient; furthermore, allow the exit
velocity to be given by the relationship for isentropic flow,

) 2 l—<ﬁ)y-l/y 172 75
Ve T Sl o\ T\Fe (7>

The primary isentropic thrust is therefore given as

. 2 PV .
T, = m,JYRT, -0 l-(FO) (76)

It seems that for unchoked flow the static exit pressure is equal to the ambient
(for the ideal case); if the nozzle pressure ratio is defined by

NPR = 20 (77)
P

then the isentropic thrust equation takes on a convenient form for evaluation of
flow conditions.

For choked flow from a convergent nozzle the exit pressure is not, in

general, equal to the ambient. It is then necessary in the analysis of choked flow
to return to the original expression for thrust and account for this fact:
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T, = rt RT o —2 1—(’3")%”9 “A(P.-P,) 7
s = I, Y 0(y_l) Po ° [ a ( 8)

where the subscript a referes to the ambient condition. Now, with the substitu-
tions

M, = p,u.A,
P,

pP.RT,

m,rT,
A, =
P.u,

and the additional relations that

L T REE
= J2¢,Toqrl 1| =
. celo (/’)

then the isentropic thrust equation becomes

2 PV VY mRT,( P, P,
famom ”‘“(ﬁ{“(a) }) " (F;E)
2 PN\
T, - m. ymo((.;_ﬁl.){l_(ﬁ) })
mRT, (1 - P./P,)
C e o1 (P r )
Now,

RT,  T,(RJT, 50
T2eits | Ta\ e, (50)

RT, T, \/E_‘Twa(y'i"{_) 81
J2¢,T, To

and for choked flow
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s )
Po  \y~+l (82)

then

Lo (P v 83
Py y+1 (83)

SO

(84)
Continuing,
y-_l
T, P\ 2
— = | =2 - (85)
To Py y+1
v
Pq PoP, 1V P,
J— = 0 P (y__) e (8())
P, P.FPo, 2 P,

which provides the result
S - + y/y—]P
_— rfz\/T(){ 2yR \F(/+I) 2 )(1_(y_1) )}
y+ ! y+l 2 Po

Combine the terms

/R(y+l)( 2 ) _ \/_:)R, (88)
2y y+1 y(y+1)

then we obtain the desired result for the isentropic thrust for a choked nozzle:
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2R « 1P,
T = myT, -—~b<y v lo- (-”? ) } (89)

y(y+1) Po
Thrust, thrust augmentation, and ejector efficiency

As previously mentioned the ratio of the total momentum increment and the
thrust that would be obtained from the primary nozzle under ideal conditions yields
the thrust augmentation ratio,

TSYS
§ - S (90)

FIP,IDEAL
where the system thrust is given by
Tsys = m4(U4_Uoo) (91)

and the thrust from the nozzle under isentropic flow conditions is

Fopipear = mIPU'lP (92)

where

!
U‘ P (y-1)72y 2 P (y-1)7y 2
1p ( O.IP) | - e (93)
CIP P|p )"l PO,IP

The efficiency of the energy transfer process is given by the ratio of the kinetic
energy of the efflux and the energy input at the primary nozzle; the energy efflux is

I
KE, = §m4B<U4>2 (94)

and the energy input is

Evp = UIPAIP(PO.IP_PIP) (95)

Solution Options

In the previous section there were (for the general case of analysis) presented 9

equations describing ejector physics in terms of 12 unknowns. The difference between
control-volume analyses generally centers around the manner in which closure is
provided. Two basic approaches are distinguished in the present work according to
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intent - the "direct solution" is used for parametric analyses and the "iterative solution"
used for predictive analyses. The iterative approach is obviously preferred in the
present work.

Direct Solution

From a computational point of view, a parametric analysis involves a direct
solution to the system of equations. That is, it is a simple matter to specify a broad
range of secondary inlet conditions and compute a corresponding set of discharge
conditions. In those cases where multi-valued solutions exist, selection of the
"correct” solution is assisted by the entropy condition. No attention need be paid to
extracting which of the solutions are naturally occuring, only that the solution
correspond with the prescribed conditions at the secondary inlet that, for whatever
reason, in fact have arisen.

The parametric approach is not in line with the objectives of the present work
so there is no need for further discussion. Complete coverage of the parametric
viewpoint is given in the works of Addy, Dutton, Mikkelson, and co-workers (see
references).

Iterative Solution

Although the iterative solution involves the same set of equations as the direct
solution, it is the objective in the former to seek the appropriate inlet velocity which
provides an exit static pressure corresponding with the ambient. So rather than
select arbitrary inlet velocities, a reasonable estimate at the correct value is used
(through, for instance an incompressible flow analysis) that meets ambient pressure
conditions, and the result then refined - by iteration - until convergence is reached.
A typical solution approach is presented below, although, as alluded to earlier, other
solution procedures given in the literature may vary in some details of the steps
involved.

i. A Typical Solution Procedure

The procedure outlined below reflects the assumption of insentropic inlet
and diffuser physics; the impedance of the nozzle to the flow and other
"real-flow" effects are ignored for the present discussion. We have:

1.  Compute the free-stream stagnation pressure and temperature Use the given
free-stream static pressure, static temperature and velocity in the following:

V. = |U]|sina
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To.w = Tuuf2(yuo’Mao)

Compute the primary nozzle discharge conditions Use the (prescribed)
discharge mass flowrate, stagnation temperature, and static pressure in the
following procedure (Appendix J describes the modification if the stagna-
tion pressure is given instead):

(i) Compute the NPR based on the assumption that the discharge pressure
is the same as the ambient:

172\ ¥/y-1
] m2TR{vy-1
NPR = [ L+ s 0 (y )
2 2 P2A2y 2

(ii) Compute the NPR for choked flow (M =1)

. £ 1\
NPR® = (y )
y

(iii) If ~PR>NPR", the nozzle flow is choked; use Fliegner’s formula to
compute the stagnation discharge pressure,

m
PMP=18&U423

and the actual NPR is then based on the ratio of this stagnation pressure
and the actual back pressure.

(iv) If vPrR <nPR", the nozzle flow is subsonic. Use the static pressure at the
nozzle discharge (an input condition) to compute the ratio

/y-1
Pour _ (1 1/ ., r_fzizef(y_-_l) Y
PlP 2 2 P2/12'y 2

then compute the actual NPR from the known back pressure condition.

(v) With the correct stagnation pressure now established, the computation
of the static temperature and exit velocity can be made

T,, = TO,IP/f2(YIP’MlP)
Vie = Mypcy,
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Assume MI1S The solution to the steady-state problem is an iterative

rocedure; in the present work a "starting solution" must be given. An
initial Mach number assumption of 0.01 has been found a convenient
starting point for the computations of the present work.

Compute station 1S conditions. The known free-stream flow conditions, the
Mach number at station 1S, and the assumption of an isentropic inlet are
sufficient to estimate station 1S conditions. The isentropic assumption
allows one to equate the free-stream and station 1S stagnation temperature
and pressure:

Pois = P
Tohs = Ty

Then

PlS

PO.IS/f:x(ylS'MlS)

T,s = To.ls/fz()’lvals)

The mass flowrate at station 1S can then be computed; enough information
now exists to compute the mass entrainment ratio.

Compute properties at station 3. Apply the system of equations from section
4.2.1.5:

M, = fl?(Ba’YS'KJ)
T, = To.s/fz()’a'Ma)

Py Ar [RoTosfolyeMe) |
P, A, RPTO.P/()(Y:)-MB)

Pio = Pafa(Ya'Ma)

The mass flowrate at station 3 can be computed with these results.
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6.  Compute properties at station 4 The isentropic flow approximation and the
assumption that the discharge pressure is equal to that of the ambient

introduces
P, = P,
Pao = Pip

2 P yi(y-1) Y
y— 1 P4

This velocity represents that which, if the station 1S velocity were correct,
would match the stagnation condition at station 3 to the static condition at
station 4. Once the static temperature is computed

T, = To.4/f2(y4'M4)

enough information exists to compute the mass flowrate at station 4.

7. Compare the mass flowrates at stations 3 and 4. In general it is unlikely the
initial guess for the station 1S velocity is correct, so the mass flow rate at
station 3 will not be equal to the mass flowrate at station 4 (the latter based
on a static discharge pressure equal to the ambient). If this is the case, the
"surge" is given by,

m' o= my-rm,
and the mass flowrate at station 1S given by

m,s = Em

from which the new inlet velocity at station 1S can then be computed.

8. Repeat steps 4 - 7 until the solution converges. The convergence criteria is
that

Im*| < € = 0.1

9. Proceed with the computation of thrust, thrust augmentation ratio, and ejector
efficiency.
This solution procedure is summarized in figure 11.

REMARKS:
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1. Step 6 is based on an unknown value of the exit pressure (station 4),
allowinﬁ for the general situation where the exit pressure is not equal to
the ambient. Some modification of the procedure is allowable when the
latter is true. In such a case the computed Py is compared with the ambient
and modification of the inlet velocity based on the error in pressure
prediction.

2. There is required a second iteration contained within each timestep if an
ideal gas is used instead of a perfect gas. Figure 12 provides the
computational steps for the inlet region. These steps are typical for each
control volume and differ only by the subscripts of the variables used.

Sample Computations

A FORTRAN program for the Steady-state Ejector Analysis (SEA) performs
computations for the methodology outlined above (Preparation of a user’s manual for
this routine is currently in-progress).

For the purpose of comparing theorctical predictions with experimental data,
some preliminary data from the DeHaviland ejector tests at the NASA Lewis PLF
facility have been made available to the present work; an overview of this data is
presented in Appendix K.

Results

Input data to simulate PLF ejector runs 223-239 were considered adequate for
the test of the steady-flow methodology since

A. The nozzle mass flowrates were between 18.7 Ibm/s and 46.97 Ibm/s -- a
range broad enough for the primary nozzle to be choked somewhere
inbetween (about 30 Ibm/s), and

B. The primary nozzle stagnation temperature of 760 OR was considerably
higher than the 540 OR ambient stagnation temperature.

Figure 13 illustrates that the steady flow analysis presented here is capable of

predicting both the magnitude and the trends obtained in the experiments; note the
mirroring of the "dip" in the vicinity of choked primary nozzle flow.
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6. UNSTEADY FLOW ANALYSIS
Focus on Transient Ejector Flow

Fluid flows characterized by time-dependent velocity fields are termed unsteady.
More revealing descriptions are linked to time-asymptotic flow behavior. A transient
flow is a ’temporary’ unsteady flow, associated with, for example, a change in ejector
operation from one steady-state condition to another. Contrast this with oscillatory
flows in which a periodic time-asymptotic flow character is exhibited. Ejectors utilizing
pulsed primary nozzle flows are of the latter type. In the present simulation the focus on
transient, not oscillatory, ejector phenomena descends from flight-critical aircraft flight
control scenarios; an example would be transition to forward flight from vertical
take-off.

Effects the transient ejector simulation should capture are:
1.  Ejector response to the primary jet actuation,

2. Momentary depletion of net thrust due to reallocation of engine fan air to the
ejector,

3.  Feeder line delays (related to actuator transients).

Upon integration of the ejector, engine, and airframe simulations, incipient vertical
deceleration effects (due to thrust lag% can be quantified.

Remarks on the Energy Exchange Process

In connection with recent research on the coherent structure of turbulent flows, it
appears that even steady-state ejector operation relies on (local) unsteady flow
processes'. That is, in a coherent flow there are continuously deforming boundries
whose motion can (in principle) be tracked - not time averaged as in classical theory -
so that there is a distinctly traceable mechanism for work by pressure to be done and
therefore energy (attributable to pressure) between streams to be exchanged. Addition-
al energy exchange is provided by viscous shear forces, but these do not rely on the
motion of the boundary. Since the pressure-exchange process (non-dissipative) is very
short in duration relative to the ((.ﬁssipative) process of mixing (viscous-dominated),
there is potential that a pressure-exchange dominated process is likely to be more
efficient than a viscous dominated process. This notion is supported by the marked
increase in performance of (correctly designed) ejectors with pulsed primary flows in
comparison with their steady-state counterparts.

Since the literature reveals that most unsteady ejector studies concern pulsed laser
operation, it is of interest to employ the conclusions from these studies in the present
work (especially for work containing comparisons with experimental data). Such may

1 This "unsteadiness” in a turbulent flow has, of coursc, been known for a long time, it has just traditionally
been a practice to use time averaged quantitics in, for instance, the Navier-Stokes equations. Sec Liepmann
[1979], and Hussain [1981] for discussions of "classic” vs cohcrent turbulent flow modclling.
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not be ;he case, however, since there is a distinct domination of pressure-exchange
mechanisms in pulsed jets that cannot be assumed to rfmain in a steady-flow turbulent
jet entrainment scenario for thrust augmenting ejectors<.

The present work employs the concept of kinetic energy exchange between the
primary and secondary streams for the transient secondary ve{;ocity prediction. There is
a limifation to this approach in that an emprical correction is needed for closure.
However, there is significant technical antecedant for the correction factor and its use
follows from the work of Korst and Chow [1966]. It is important to remark that the
creation of a kinetic energy balance for this purpose requires deletion of the
corresponding kinetic energy balance terms from the energy equation for the control
volume (what remains is the thermal energy equation).

Three Levels of Approximation

From a technical standpoint difficulties in real-time ejector simulation arise from
evasion and compromise. By "evasion" it is meant we are in search of the "answer”
without mandating recourse to solving the full unsteady Navier-Stokes equations; in
terms of "compromise”, there is a need to balance the level of approximation used (for
which empirical calibration of the theory is then intensified) and the expectations for
the accuracy of the simulation. Three levels of approximation can be considered:

1. Quasi-Steady Flow: Assume that the characteristic time for changes in the forcing
function (boundary conditions) is greater than the characteristic time for response
of the fluid - that the fluid is "very agile" and therefore permits the steady-state
equations of motion to be used at each instant in time.

2. Characteristic Volume Approach: Allow that the mixing region can be partitioned
into three characteristic volumes; on¢ domain characterizing secondary flow
effects, another for the primary nozzle flow, and one to characterize the mixed
flow domain (the size of the control volumes are time dependent).

3.  Finite Volume Approach: Identify a finite number of control volumes of fixed
size, partitioned only in the streamwise direction (the size of the control volumes
are time independent). This approach introduces a relationship between the
primary and secondary flows with the use of the self-similar profiles.

Remarks

In the analysis of a given unsteady flow problem, it is quite convenient
mathematically if a quasi-steady formulation can be assumed valid. This leads to the
use of steady flow equations in an unsteady flow analysis; at each instant in time the
flow is assumed to instantly respond to boundary condition transients. A basic issue,
however, is whether the characteristic time of the forcing function is the same order
of magnitude as the relaxation time of the flow.

There is no need to remark on the details of the system of equations for this
approach since this is, by default, already given in the steady flow discussion.

2 An interesting note here is that, at the other cxtreme, for pulsed flow there exists an cntrainment even in
a laminar flow for those gcometrics where a sccondary strcaming (a viscous phenomcna) is present.
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In the case of external unsteady flows the Strouhal number (a characteristic
Barameter for the unsteady flow frequency) plays a significant role as the criterion
y which to (or not to) invoke the use of a quasi-steady formulation (see Drummond
[1985, 1986]). Although the Strouhal number is also a convenient characteristic
unsteady flow parameter in internal flows, there appears no technical antecedents
on which to base the prescription of a threshold for quasi-steady ejector fluid-dyn-
amic operation. Only testing would allow this assumption to be made a-priori.

An appropriate application of the characteristic volume approach is for flows
that exhibit distinct flow regime characteristics, like, for instance, the inviscid
interaction region discussed in section 3. Time lags for this system are generated
through imposition of lag coefficients between field variables of the characteristic
region; although this is a simple approach, it relies on accurate knowledge of the lag
coefficients for the simulation to be accurate (read: analysis cannot be divorced
from transient experimental data). This would be a new method in the approxima-
tion of transient ejector performance, but is not explored further in the present
work.

The finite volume application of this work is also new in ejector analysis, but it
is anticipated to be more accurate than the characteristic method since considerably
more elements are employed; as expected, though, execution is likely to be more
CPU intensive. Here, a hybrid approach is based on the work of Drummond [1985],
and Seldner, Mihaloew, and Blaﬂa [1972]. Note that an important feature of the
method is that steady-state data (not transient) can be used in the calibration of the
method. It employs control volume elements of constant volume and assumes the
mixing region flow is expressable in self-similar form.

Finite Volume Approach

It is evident that the quasi-steady and characteristic methods of analysis previously
discussed really make no specific assumption about the nature of the flow in the mixing
region. The finite volume approach attempts to overcome this problem. Indeed, a
fundamental philosophical point to be made is that in exchange for the ability to more
accurately depict conditions (than you would otherwise have) inside a given sub-region,
a more complex form of the surface integrals must be accommodated.

In the present work the inlet and diffuser regions are permitted to be represented
by a quasi-steady approximation, and the finite volume method of analysis applied only
to the mixing region. This is based on the perception of the inlet and diffuser physics to
be driven by imposed pressure gradients, and the mixing region dominated by turbulent
viscous interaction. Obviously, the notion is that the physics of the mixing region are the
cause of a situation that yields the pressure gradient effect in the inlet and diffuser.

The fundamental assumption in the finite volume approach is that the mixing
region is divided into N sub-regions of known volume and whose individual velocity,
temperature, and pressure can be given by characteristic quantities. A significant
departure from previous discussions is that the characteristic quantities are not
necessarily uniform over the sub-region, but do relate to characteristic distributions.
These distributions relieve us from a specific treatment of, for instance, an inviscid
interaction region, though by default such a phenomenon should be predicted within
the domain of an accurate solution methodology for the problem.
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Corresponding with the finite volume method of analysis is the need for specific
statements about the characteristic distribution within each sub-region. A discussion of
the profiles used in the present work follows an overview of the basic control volume
equations for the mixing region. Then, application of the finite volume method to the
continuity, momentum, and energy equations for the mixing regions is discussed. Lastly,
the complete system of equations for the ejector are assembled and the proposed
method of solution presented.

Figure 14 illustrates the finite volume nomenclature and some typical elements. A
virtual grid representation is given in figure 15.

General system of equations

The basic form of the control volume equations are:

Mass
d -,
;i?{mcu} = ka (1)
Momentum
{
& pvavem, 2L - - pu-myda-§ n-(pyansr (2)
dtJy ~ dt A A
Energy
d
—deV = —fyl’y-gd/! - (y—l)fl’g-gd/l (3)
dtJy A A
Entropy
d ,
—fpsdl/ - fsdm 2 0 (4)
dtJv A

Again, the presence of the surface integrals (that in the steady flow analysis were
simple sums of average quantities) reflects the idea that one cost of incorporating a
simple turbulence model in the time dependent volume integrals is given by
increased surface flux term complexity.

Note the heat equation has replaced the general power equation for the energy
equation (see derivations in Appendix A). Application of the self-similar profiles is
in fact easier for the heat equation than it is for the power equation, but both are
eventually needed in the analysis. As mentioned earlier, the kinetic energy
components will be accounted for in a separate balance intended to predict the
secondary flow magnitude; this will be detailed later.
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Turbulent Jet Approximation

A diagram of the present turbulent jet geometric characteristics is given in
figure 16. Extending from the mixing region inlet plane there exists a potential-core
region characterized by a fairly uniform centerline velocity, with no transverse
component. This is distinguished from the mixed-flow region where the centerline
velocity decay arises from momentum transport to the entrained fluid.

This section extablishes the basic features of the potential- and mixed-flow
regions for use in the finite-volume analysis.

1. Jet spreading approximation

Two jet angles are associated with the growth of the turbulent jet. One
Eortrays the decay of the potential core region and the other bounds the outer jet
oundary layer growth. Rectilinear profile assumptions for both have an analytic
foundation and empirical verification. Although the outer jet expansion angle
depends on the ejector pressure gradient and inlet velocity ratio, the inner jet
expansion seems more exclusively a function of the latter. To eliminate the
introduction of additional unknowns in the ejector problem formulation it is
worthwhile to explore an analytic approximation for the inner boundary length,
by ; see the potential core region of figure 16. Below, some remarks on the outer
jet expansion follow a discussion of the potential core approximation.

il. Potential core region length

Characterization of the potential core region is given in the present work
by "calibrating” an analytic model; calibration is done with ejector data.
Abramovich [1963] derives the length of the initial region for 2-D planar
co-flowing jets as:

L 1 + r

bo ¢, (1-r)(0.416 + 0.134r) (%)
where the velocity entrainment ratio is
r = U;s/Upp (6)

and the empirical coefficient for free jets given by

0.2 < ¢;, < 0.3

Alternate models are presented by Abramovich for multiple jets that link the
increase in thickness og)the jet proportionally to the intensity of turbulence in the
stream (those models also assume a loss of single jet identity loss for multiple jet
configurations). We find it convenient to use the expression above with a
corrected constant
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c, = 0.4

which is based on the experimental work of Bernal and Sarohia [1983].
Prediction of L/bg of 15.5 for a 2-D single jet corresponds fairly well with a value
of 18 extracted from their plots of nondimensional centerline velocity. In this
regard the work of Krothapalli et. al. [1980] is of interest since multiple
rectangular free jets were considered and the dimensionless length estimated
(from their plots% to be in the vicinity of 14-20. This is the basis for the earlier
remark that, at least for the ejector configurations of interest, the rate of the
potential core spreading is influencedmore so by inlet velocity than longitudinal
pressure gradient. For the limited purpose of establishing the non-dimensional
potential core jet length the free turbulent jet results are applicable. Bear in
mind that unlike the free turbulent jet an axial pressure gradient is assumed for

the ejector.

Figure 17 illustrates the non-dimensional centerline velocity as a function
of the non-dimensional centerline distance for a typical multiple free jet. The
potential core region is important since the total non-dimensional length of the
mixing region under consideration is on the order of 20-30.

iii. Outer jet boundary expansion

A linear representation for the outer jet boundary is illustrated by the
boundary bjj in figure 16. This is based on the interpretation of data by
Abramovich for incompressible planar jets (free and submerged). Data from
Donsi et al [1979] supports this trend for extremely large pressure gradients
(experiments were for fluidized beds with jetting). We therefore have

b = kz (7)

and note Abramovich’s simple expression for the constant has the attractive
result

(8)

b I -r
= = ¢,
z 1 +r

where ¢7 is the same as used previously. An account of jet growth as a function of
longitudinal pressure gradient could be nested in the constant. Due to the
time-dependence of the pressure gradient for transient ejector operation the
(outer) jet growth -- and therefore the proportionality constant -- is also a
function of time. Since the development of Abramovich is based on continuity
the present work follows suit, but from a finite volume standpoint. This ensures
the finite-volume method will satisfy continuity without an ad-hoc construction of
b(x).
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It is interesting, though, to remark on a test case for the correlation abgve
where r=0.35 and an ejector mixing region pressure gradient of 14 lbg/ft< is
given. The 90 ex%ansion angle from finite volume continuity considérations
compares reasonably well with the 10.19 value from the Abramovich model
(with c7 =0.4) and, as expected, is higher than the 50 value found with ¢; for a
free jet with no longitudinal pressure gradient.

Self-similar profiles
In the characterization of an element of the mixing region the velocity

description simplifies with the 2-D planar turbulent jet self-similar profiles of
Abramovitch [1963] for co-flowing jets:

v-u, | ( x ) 15y 2 9
Up — U, b (%)
Alternate co-flowing jet profiles are used, for instance, in the work of Korst and

Chow [1966] or Lund, Tavella, and Roberts [1966], but the polynomial form is more
applicable to the physics of interest here.

Introduce the dimensionless radial coordinate,

X
g_g (10)
so that in general form
-v, _z!-s 2, < !
VTV L ey - {(‘ £ Of<} (11)
U~ VU, 0, ISESE
then
v =u,(l-®) + v, = [(¥) (12)
where
E = B/b (13)

and B is the maximum value of the jet half-width, b. For an incremental volume of

length 4z, width y, and height x, only part of the jet consumes the element.

Therefore, the general velocity profile is written
«_ [f(#), 0<F<]

v(§) = { v, 1<E<E > (14)
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. The description above makes no account for the potential core for the initial
jet region; for this we note

and the dimensionless radial coordinate becomes

_oXTbr o xtby (16
b”_b, b )

Recognizing the inner boundary vanishes outside the potential core region (by
definition), then by default the dimensionless coordinate takes the correct form if
we define

b bo—-ztan0, =z<z, -
o 0,22z, 17y

where zJ is the length of the potential core region. In the discussion to follow
distinction between the potential core and mixing regions is not necessary if the
appropriate non-dimensional parameters are understood.

To allow for a density variation zcross the jet a basic self-similar profile is
assumed,

pop.

o o A(E) (18)
where

ACE) = {(]) (;.S;;;g} (19)
and obviously

p = p(l=-A) + ppA (20)

The value of ¢* used in the present work is unity, though fluidized bed data suggests
a value of 0.9 allows more interaction between the jet boundary layer and the
free-stream. For a constant cross-sectional density there is no need for a self-similar
approximation; thus

p = p (21)
Pressure is assumed to have a profile similar to that for density,
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= A(%) (22)
Again, this profile need not be invoked if the assumption of a uniform transverse
pressure gradient is specified.

Temperature profiles are shown by Abramovich [1963] to have the dimension-
less profile

Tr-T,
Tm—-T,

= ¥ = 1-§'° (23)

derived as the square root of the velocity profile.

Transformation of coordinates require that derivatives of ¢ be determined. If it
is assumed that b is in general only a function of z and ¢ (not x), then,

df 1

= - 24
dx b (24
so, for example, the generic area integral across the mixing region is,

¢ = fosz(w)cm - fOBz(up)w(zx

W{fobz(w)dx+/;sz(w)dx}

1 f
Wb{j; Z(W)dtf*_fl Z(W)C%} (25)

and the integral for the complete cross-section would be

N
zZ = )glin) (26)
i=1

i. Example Application: Average velocity computation

Computation of the average mixing-region velocity at station k is a simple
example of the use of the self-similar profile integrals. Define the average
velocity by

_ 1 f
v — | vdA 27
* A4 (27
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we have for "N" nozzles that

v, = 2wagudx
k Ak 0]

and through a change of variable

- 2NWb, [t
Uy = ———-—f v,d¥
Ak 4]

Application of the self-similar profiles yields

_ INWb, [
v, = —/ﬁ-ffo{v,(l—fl)*vmdz
where
{U—;“ﬂQOSg<l\
fh = ~
o.1<t<f |

Completion of the integral yields

] INWb ! ! !
5, - __*<Umfo fldewofo(l—f,)dbvaﬂmdf}

Ak
Let
. _ 2NWb,
Ax
then
v = A{v,(1-0.8+0.25)1,(0.8-0.25)+v,(§ - 1))
and finally

v = A{0.450,+v,(§-0.45))

Application of the finite volume method
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(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

The assumptions and profiles outlined in the previous section are applied to the
equations of mass conservation, momentum conservation, and balance of energy.



Application to conservation of mass

For the generic sub-region k, bounded by surfaces at k and k+ 1,

dm , ,
a0 k = M, — My, (306)
where
B
m, = 2Nl4/f p U dx (37)
V]

From the similarity profiles
d )
m, = 2N[4/bkf (p.(1=My+p AMv,(1=d)+v, &) dE (38)
]

As discussed earlier, an account of real-flow effects is provided in part through an
empirically obtained jet spreading function b(z,t) that defines the jet boundary. This
is a common function explored in turbulent jet analyses. In general, the spreading
function is dependent on space and time, although for the present preliminary study
considerable simplification is obtained by ignoring the time dependence. It suffices
for the present work to admit a quasi-steady approximation for the jet expansion;
this approximation can be checked when ejector data is available.

After substitution of self-similar profiles the mass flux integral becomes

¢
m = QNbe (p v Ad +pu, (I -A)b+p v, Al -P)
4]

U, (1 =) (1 -#)}dé (39)
then (see Appendix H)
F, = f/l(;bd.f = 0.45 (40a)
F, = fqb(l—/l)dg = 0 (40b)
F, = f/l(l—¢)d§ = 0.55 (40¢)
F, = f(l-/l)(l—¢)d¢‘ = §- (10d)
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where

" B
T

and the numerical values are for the mixed flow region.

Now,

3
]

2NWb{Z )

The mass in the elemental volume is alsc given by

B

m = fpdl/
v

0

E

2NWO(PnUnF\* DUy Pl g p Ul )

2NWAzf ndx

2NWbAzf‘ﬁdg
[4]

(41)

(42)

(43)

where the characteristic density approximation for the finite volume has been used

— 1
p = é(pk*'phx) = Py

If now

¢
[ par = pu£ vp.E,

where
t
E, = 'f AdE
0
:
E, = j‘(l—A)d{
]
then
m = 2NWbAz(p F,+p,F,|

The continuity equation now has the form
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(46a)
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(7))



dpn, dp,
5AZ<E|(_('1}_)+E2( dt >> - <bk2lk_bk~1zlm> (48)

i. Uniform transverse density approximation

A uniform jet density in the transverse direction simplifies computations by
eliminating the distinction between entrained and primary flow density. This
does not ignore the marked extreme of secondary amd primary flow, rather,
treats the combined flow with a characteristic density extracted from thermal
exchange upon mixing. With this assumption the elemental volume mass
becomes

m = 2NWAzpB (49)

and the result for the finite volume density derivative is

(dp) byZy,~bra 2, 5o
dt }, BAz (59)

ii. Computation of 6,

Continuity conditions across the first mixing region finite volume (steady
flow case) allow an approximation for the outer jet spreading angle. The
approximation is based on the following

1) constant secondary velocity, and
2) constant primary and secondary flow densities.

In practice, these assumptlons provide the jet spreading angle as a simple
transformation from "top-hat" profiles to those of a self-similar form. Since

m, = 2NWb,Z, (51)
then
m,
b, = — o2
! 2NW 7, ( )
where

and the outer boundary layer then defines the jet expansion angle. A more
convenient expression is given by an explicit representation of b as a function of
the primary and secondary inlet velocities. Recall that
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Zl = pmval+pava2+meoF3+pavaF4 (54)

where
F, = %+o.45 (55a)
F, = 0.0 (55b)
F; = 0.55 (55¢)
F, = B-b:_, (55d)

b
By substitution
m, = 2NW{pmvm(b,+O.45b)+p&mvo(0.513b)+p,v,(8—b,—b)} (56)

then the expression for the boundary layer thickness is

) m.—zNWp{b,um+(B—p,)ua} (57)
2NW p{0.45v,-0.450,)

The outer jet expansion angle is therefore

b,-b b, +b,-b
0, = arctan(#" ,9) - (/ ,,,,:’_, 0) (58)

g
o J “a

The expansion angle is determined at the time of initialization of the flow and, as
a first approximation, remains constant in time thereafter. This assumes the
inner boundary layer is not a deciding influence on the overall jet boundary layer
characteristic. The form of the inner boundary layer used in the present work is
Erimarily a function of the primary and secondary velocity ratio. On the other

and, the outer jet boundary is influenced more by the longitudinal pressure
gradient than by inlet velocity ratio. Providing that the free-stream (inlet) and
discharge pressures remain fairly constant, the constant boundary layer assump-
tion will, as a first approximation, not significantly impact the gross characteriza-
tion of ejector physics.

Application to the momentum equation

The integral form of the momentum equation for the elemental volume is
given by
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dlu

g-fpz_)dl/ + m,——= = —jgpy(y-a)d/l - fa-(pl)dA+t‘ (59)
dtJv dt A A

i. Time rate of change of momentum

Computation of momentum within an elemental volume is given by the
volume integral of the density and velocity product,

B

M, = [pvdV = 2Nl~/1]z/ puvdx (60)
4

0

For simplicity the average density concept from the continuity equation discus-
sion is used here; furthermore, an average element velocity is assumed character-
ized by the velocity at station k+ 1,

B
M, = 2Nl|/4]zﬁf v dx (61)
]
this yields
My = 2NWbAzp(v, (F +F,)+u,(F,+F,)) (62)

from which the time derivative is

de dp
= 2NWbAz( —{v (F +F. |+v {F.,+F
dt (dl{ m( | 2) a( 3 4j}
dv, du,
p(F,+F2)E-+p(F3+F4) dt) (63)
it. Momentum flux
The momentum flux across station & is
M, = fpu"d/x
A
B
= 2wa P ULdx
0
d 2
= 2Nl/bk/ pwidE (64)
0

Scalars are used in the above since the directions (signs) are understood at each
station to be given by:
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—('.:u.,_l)k = +] (65a)
+(i, n),., = -1 (650)
Recall that

v o= v (l-¢) + v, P

m

where
1-£'9)?, o<r<1
s(f) - {( £0) o<t
0, 1<§<§
then
v = wi(1-#) ruie’ v v, (0-97)
and so

H
M = 2AN/bf (P, (1= M)+ p A {v2(1-8) 2+ 0207+ 20,0, (6 -¢7))ds
0

(67)
Performing the multiplications,
¥
M = ZNMQ)/.(pJf(l—¢)2(l~A) + pui(l-¢)’4
0

*pun(1-MP?+p w2 ne?

+ 20,00, (1-Mie-d7) + 20 v Nb-d7))dE

(68)

Introduce a set of integrals G;
G, = de¢2dz = 243/770 (69a)
G, = .[A(1—¢)2df = 320/770 (69b)
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Gy = 2f/1(¢>—¢2)d5 = 414/1540
G, = j}l—A)¢2d§ = 0

Gs = f(l—Ax1—¢fds = £~

G, = 2[(1—Aﬂ¢—¢2ﬁu = 0

so that
M = 2NI~./b{pmv,2nCl+pmqu?+pmvaum63+pnv;’;164
+[)0U365+pnunum(;6}
M = 2NWb{Z,)

The net momentum flux is therefore

-$ pv?(i, n)idd = (M, an )
A

Il

zNu(bkz%—bh.Z%qN+h)

iii. Static pressure integral

The surface pressure integral is re-written as

~§ Pmyan - | Pri-(-iyyan- [

P(+ivi))d A

k-

so application of the self-similar profiles is restricted to the equation

¢
de/l = 2Nla/bf rPd¢
A 0

from which we obtain
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(69d)

(69¢)

(69/1)

(70)

(71)

(72)

(73)
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deA
A

¢
2Nw1)f (P(1~ M)+ P, A)dE
0

]

QNWb{P E, +P,E,)

2NWbZ, (75)
where E7 and E) have been previously defined.

The surface pressure integral is now given by

_ng([’ﬂ)dA = +2NW{bAZO.k“bk+|Zo,k«l} (76)
A

iv. Wall friction

Frictional effects are considered an explicit function of velocity, pressure,
and temperature (or density)

Fo = Filpov,.P)) (77)
but in the first approximation frictional effects are neglected.

v. Summary of components

The modified form of the momentum equation is given by summary of the
components discussed above, the result is

2ZNWb,., AZ(%IB{Um(F1+F2+Ue("‘3+[:4)}

cli

dt ' 7u‘tap(/"3+/"4)>

= ANW(byZ,= 0y Z,)« 2NW (0, 20 =04, 2, ) (78)
The last term has the simple interpretution of the net momentum flux,
My = 2NWb,(Z,,+7,) + 2NWb (7, + 7, ) (79)
where at the ejector inlet

MNoll = AIF(PlP+plPU?P)+AIS(PlS+pISU:IZS) (80)
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A solution for the time derivative of velocity can now be extracted

du,, My, dpl Fa+F dv f Fq+F

T = ____L"_'____ﬁ* Untu, ‘1 4 - ‘"’ ‘4 (8])
dt 2Nka.1AZ dtp I’|+F2 dt [‘l“'/"z

Application to the energy equation

The form of the energy equation most conveniently adapted to the finite
volume analysis is the heat equation, given in integral form as

& pav = -y $ punda-(y-1§ pU-nas (82)
dtJn s s

Distinction between this interpretation of the energy equation and the mechanical
and general power equations 1s described in appendicies A and B. Term by term
evaluation follows; in all discussions use has been made of the uniform transverse
pressure and density assumption.

i. Surface flux terms

Since pressure and density have similar representations, the pressure
energy-flux term is similar to the mass flux term; by direct analogy

g, = —yfpy-acm — 6, -6, (83)

p

Y2NWb, plu (F +F,)+v,(Fy+F,)}

®©.
-
I

Y2NWbZ, (84)

and where the self-similar profile integrals F; are the same as defined previously.

The pressure-energy flux associated with the free-stream is

-(y—l)fspu,-@cm = (=D A(pe-pes) (85)

If desired, the area term can be re-written as

Ay = 2NWb (F, +E,) (86)

or
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A, = 2NWb,E, = 2NWB (87)

ii. Time rate-of-change of energy

The volume integral of pressure cast in finite volume form is (see
discussion on conservation of mass)

fpdl/ = 2NWBAzp (88)

and has the time derivative

df dp\l
— dvV = 2NWBAz| — 89
dt p Z( dt /, (89)

Considerable simplification of the time-derivative is realized from the approxi-
mation that static properties at station k are characteristic of the finite-volume
element. This is not a statement of uniform volume thermodynamic properties,
rather, that the reference for derivative computations can be approximately
given at either station k or k+1.

iii. Summary of components

In modified form the heat equation is

d
QNWBAz(d—‘;) = y2NW(b,Z,-b.,2Z,)
k
+(y- DU2NW(b,Zo-be, Z,) (90)
from which
((—13) e Y (0,2, be ) L U(by Z o b4ar Z6) (91)
dt R AZB k 1 k+ 1 1 AZB k 0 k+1 0
Homentropic secondary flow

Analysis of a finite-volume element whose cross-section spans the mixing
region provides a relationship in time and space between the primary and secondary
flows. ‘The description of the mixing region is incomplete, however, since the basic
profiles used previously only represent the characteristics of the jet boundary layer
and not those of the secondary flow itself. In this situation an inviscid, homentropic
flow assumption for the secondary flow provides closure for the mathematical
representation of the mixing region.
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The present analysis is predicated on a shock-free flow. However, as men-
tioned by Anderson [1970a,b), introduction of shocks could be explicitly introduced
through discontinuities in the initial flow field.

Homentropic flow is distinguished by the absence of temporial and spatial
gradients of entropy

Ds
YY e Ys = 0O 92
D s (92)

Entropy jumps across a shock violate this condition. Nonetheless, in this work the
fact that entropy is assumed uniform throughout allows the fluid flow to be
described by the relation

;% =consl (93)

This replaces the need for the energy equation, but adherence to conservation of
mass and momentum remains. The derivative of this expression yields

ar _ Py
dp P
and thus

). ()2
at /, p /. \dt/,

Conservation of mass allows for the computation of the density gradient in the
secondary flow, but the representation chosen here is to compute the gradient one
time step after changes in the primary flow have been computed. A point function
computation arises

(95)

(@) _ (p)ea(p4),

dt At

A description of the entrained velocity derived either through a solution of the
momentum equation for the secondary flow, or, as in the present work, use of a
kinetic energy transfer function. The momentum equation approach is noted briefly
below. Details on the kinetic energy function are given later.
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i Momentum

For an inviscid flow assumption Euler’s equation represents the momen-
tum equation for a material volume. Although previous discussions consider
extention to a material volume, the assumed existance of a streamline for the
homentropic flow is a valid simplification. For one-dimensional flow we have

ou 9 0 oF
v, v - —(U+U)—::—l—f

ot ot
Finite difference approximations for the streamwise derivatives give the time
derivative of velocity in terms of velocity and pressure at stations k-1, k, and k+1.
Finite volume initialization
Nomenclature for the virtual grid used in the finite-volume initialization is given
in figure 15. Initialization of pressure, velocity, and density is based on steady-state
versions of the mass, momentum, and energy equations. The assumption is made that
the uniform pressure and density profiles apply. Application is discussed below.

Conservation of mass

Elimination of time derivatives in the mass conservation equation produces

0 = 2NWb,Z, -2NWb,Z, (96)
where

Zl = pmval+p¢UmF2+pmvaF3+p¢ch4 (97)
Now since

m, = 2NWb,Z, (98)

then the centerline density is

m,
pj{vm(Fl+F2)+vo(F3+F4)} = ONWb. (99)

which becomes

{ . (F°+F‘)} m (100)
AU v -
Pi\Um* Y\ F v F, INWb,(F,+F,)

Solving for density, we obtain
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Pi T ovo (101)
where
m
@ - 2Nh/b,(ll~",+F2) (102)
and
b = v(f__?:i:) (103)

Conservation of momentum
Computation of the jet centerline velocity derives from the momentum

equation and assumes the entraned velocity is known. First, recognize the discharge
momentum is

M, = AIP(PIP+pIPU2IP) + AIS(PlS"'pISv?S) (104)

and then at station k

M, = 2NWb,(Zo,* Z>,) (105)
where
Zy = (PmE\*+P,Ey) (106)

Z2 = {pmvfncl+pmvfc2+pmvnvm63

4 PURC 4t P UGS+ P VUG e) (107)
then
.___Ml_ 2 2 -
2NWb,'p(E'+E2)*P{”m(GI+G4)+v.(Cz’st)*v.vm(Ga'er)} (108)
Normalization yields
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= P +p Um+v¢ +Uevm
ANWb (G, +G4) C,+Gy G,+G,

which has the shorthand notation
p(v2+vpcrd)rpe = f

where

Ga+Gyg
c = v\ ——=—
G|+G4
G,+Gs
d = V| —/——
v'(cl+c4)
E\+E,
e =
G["'G.g

M,
2NWb,(G1+C4)

Conservation of energy

The steady-state result for conservat ion of energy is
o = f pu-ndA
- 2NW{b,Z,," 6,24

and therefore (by analogy with the conservation of mass discussion)

g
p Um*b
where
Z,,
g -
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G\+Gy

(109)

(110)

(111a)

(111b)

(111¢)

(111d)

(112)
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This transformation of the thermal energy exchange is su lemented by the constant
34 g Pf Y

enthalpy relation applicable to homentropic flows (see earlier discussion).

Solution of the system of equations

Substitute the density and pressure representations into the simplified momen-
tum equation so that velocity remains the only unknown

a

ge
vm+b{u,2,,+u,,,c+d}+—~— - f (115)

Un+b

then by re-arrangement

2+ d+2% - Ly 4y 16

v, tvu,Cc+ +a a(u"‘ ) (1 )
b

vi+%(c—£)+d+gg~l = 0 (117)
a a a

vi+v, B+C = 0 (118)

This quadratic equation has the solution

B 1
= -—=x-yB?’-4C 119
where
B = c—I
a
G3+C M,(F, +F
=y S0 2 (120)
G, +G, m\G,+G,
c - q+28-%
a a

- 2 G,+Gs +Z4.o E,+F, —vb Fy+F,
¢ G|+G4 n’l, G|+C4 ‘rfl, C|+G4

(121)
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Kinetic Energy Exchange

Analysis of the primary and secondary flow interaction has not, to this point, been
completed. By themselves, the self-similar profiles close the loop for steady-state flows,
but not transient ones ! This section provides an approximation for the turbulent flow
kinetic energy exchange mechanism to characterize the influence of primary flow
changes on the secondary flow.

Kinetic Energy Computation from Self-Similar Profiles

Kinetic energy can be computed by the integral of the product of velocity and
momentum (as described in Appendix B;I; from this there results the scalar quantity

KE = lfpuads (122)
2Js

By substitution for the self-similar velocity profiles and with the use of a uniform
density approximation, the kinetic energy becomes

{2

KE = Nwbp | {v,(1-®)+v, o} d¢ (123)
t

If it is assumed

£, 2 1
then
| 3 {2 5
KE = NWbp f (v,(1-®)+v, ¥} d§+f vidr (124)
1 1
Upon integration
KE = NWbp(v3H, +v v H,+ v vl Hy+ v H +vlH ) (125)

where the Hj integrals are given in Appendix H.
Change in Kinetic Energy of Secondary Stream due to Mixing

Computation of the gain in secondary flow kinetic energy can be made by
direct extension of the general kinetic energy relation above

2

t v? v,
AKE = j;pv(g——i)df (126)
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where ¢ defines the jet boundary streamline (for which the secondary mass flow
throufh station i is equal to primary mass flow through i). For the present discussion
this dividing streamline is assumed known; Appendix L illustrates the typical
approach of analysis. Expanding the equation for the change in kinetic energy yields

1

t
(va—vvf)d§+f (va—vvf)dé’} (127)

AKE = wap{f
(4

Consider the integration as the sum of the following four components:

1
I, = fv:’d{
¢
- vIH , +v v iH,+v H, (128a)
t
I, = fu”dz
}
= vlH, (128b)
1
I, = fuufds
4
= v U F,+ulF, (128¢)
! 2
I, = fuv,dz
1
= vlF, (128d)

In sum, the change in kinetic energy of the entrained flow is
AKE = NWbp{v}(H +Hg-F,-F,)+v,v2(H,-F,)
+Un U Hy+up H ) (129)

Change in Primary Flow Kinetic Energy due to Mixing B

In a similar way as the change in secondary flow kinetic energy was computed,
the energy loss of the primary flow is given by

K f‘ v? vk
AKE = ] i P 130
PSS ¢ ( )
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where the limits of integration reflect interest in the domain of the primary jet
cross-section.

Evaluation of the integral at station i yields the result
AKE = NWbp(viH, +v,upH,y+ v, viH 3+ H v F - v, viFy)

(131)

Kinetic Energy Balance

Computations for a specified steady-state condition show that the change in
kinetic energy due to mixing is not the same for the secondary flow as it is for the
rimary. Figure 18 illustrates some ical results (for net changes in kinetic energy
etween the input and discharge of the mixing region). In fact, the gain in kinetic
energy of the secondary flow is entirely due to the mixing grocess, while the mixing
loss of the primary flow is only a fraction of its total loss. In balance, however, the

total change of kinetic energy of the primary flow is greater than that of the
secondary flow.

In the works of Korst and Chow [1966] and Chow and Addy [1964] the

relationship between the change in entrained flow kinetic energy and the total
primary flow kinetic energy is given by

AKE, s o

(132)

1 3
§P|rvlrz

where a value of 12 for ¢ for turbulent flow provides a reasonable match between
theory and experiment for low-speed flows. At higher speeds the relationship

o = 12+2.7S8M , (133)

is sometimes used. The important feature of this result is that the change in
secondary flow kinetic energy has the functional form

AKE s = F(KE,,,%) (134)

The difﬁcultf' with the energy transfer function described above is that it
rovides (by default) a quasi-steady flow agproximation. It therefore cannot be used
or the transient flow in its present form. To entertain local changes in primary-se-
condary kinetic energy in a way that does not burden the computational procedure,
consider the modified function

AKE,s = E(AKE ;) (135)
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where the subscript m denotes the loss in kinetic energy due to mixing. Numerical
testing suggests that

)um )nm 0’z

+C.m(dkf.p.m) (136)

(AKEIS = (AKEIS.m

This enhancement arises from the assumption that local velocity gradients in the
steady flow case are typically less that the gradients experienced in the transient
mode. Here, the introduction of an engineering ‘?‘gproxlmation also results in the
introduction of an undetermined constant, Cj. The alternative is to establish N
computations of the kinetic energy exchange to coincide with the N control volumes
of the mixing region; the present method permits post-processing KE information at
the completion of mixing region calculations. Sample calculations indicate

C, ~ 0.95-1.00 (137)

Summary of Method

This chapter has introduced the continuity, momentum, and energy equations
required for the analysis of the ejector mixing region. A quasi-steady flow assumption
for the inlet and diffuser relieves us from repeating the chapter S discussions for those
components here. The energy equation is supplemented by the kinetic energy exchange
equations presented above. Figure 19 summarises the solution methodology for the
unsteady flow problem. As expected, several steps are common with the steady flow
solution, especially in the initialization process 8ecall figure 11). Some remarks are
given below to highlight the assumed kinetic energy exchange process.

Communication between primary and secondary flow in the present work is based
in part on kinetic energy gain by the secondary flow due to kinetic energy loss of the
secondary flow. Such calculations are for the specific purpose of updating the secondary
flow as time evolves (changes in the primary flow are effected through solution of the
traditional momentum and energy equations for the same). Three steps are involved:

1.  For a flow condition given after the primary flow has advanced forward in
time, compute the jet streamline position at station N, for simplicity this
station is taken to be the point of mixing region discharge.

2. Compute the entrained flow kinetic energy gain before and after the change
in primary flow conditions; the difference is the net change in entrained flow
kinetic energy due to changes in primary flow.

3. Update the entrained influx kinetic energy for the net change within the
mixing region; extract the new secondary flow inlet velocity.
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7. DISCUSSION OF RESULTS
Characteristic Test Case

In the absence of data from transient flow ejector experiments (or even from modern
multi-dimensional Navier-Stokes solvers), "verification" that the proposed ejector analysis can
provide reasonable thrust predictions must be left to engineering judgement. Because of this,
a "familiar” ejector forcing function must be used. In the present work the system response to
a step-function input is not only a characteristic transient case study, but the scenario is also

coincident with typical STOVL ejector application.

For demonstration _}mrposes the ejector system response to a step-change in primary
nozzle flowrate from 18.7 to 21.85 lby/sec is chosen because (a) experimental steady-state
data at each of these oi)crating oints 1s available, and (b) the 17% change in primary flowrate
is well beyond a "small"-perturbation examination (this exercises the system non-linearities).
Changes in primary flow stagnation temperature are taken from data given with flowrate data,
but the corresponding static pressure is computed by the procedure given in Appendix J.

Calculation Results

For the mixing region finite-volume length of 0.18 ft and a characteristic mixing region
velocity of 500 ft/s, the characteristic time step for computations is

0.18
t = — =0.4
A 500 ms

To avoid infringing on this stability limit a computational time step of 0.1 ms was established;
100 time steps provided the necessary interval for examination of the step-function test case.

The empirical coefficient in the transient analysis, C; (required for calibration of the
primary-to-secondary kinetic energy exchange mechanism), was selected to match the asyp-
totic transient thrust prediction with the quasi-steady value at the new set point; satisfying this
condition required

C, = 0.97

Figure 20 illustrates the predicted ejector thrust profile for this coefficient. It appears the 2
millisecond residence time of the flow (elapsed time for primary nozzle flow to reach the
diffuser exit plane) is slightly less than the 3 millisecond interval for the thrust to reach a new
maximum. Oscillations in thrust after that point appear to settle in about 5

milliseconds.

An unexpected feature of the thrust profile is the dip in thrust immediately following
the step-change in primary nozzle efflux. Examination of the field variable profiles reveals
this is not a numerical problem, but that the increase in static pressure associated with the
instantaneous change in driving flow temporarily impedes the secondary flow. After a short
geriod, the secondary flow kinetic energy builds (commesurate with the increase in primary

ow energy) to overcome this effect, then continues in the intuitively expected manner.
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Remarks

A distinctive second-order flavor is displayed by the predicted thrust profile; under a
second-order assumption the ejector test case has agproximately a 0.75 damping ratio and a
natural frequency on the order of 300 Hz. Although the results seem reasonabllc):, itis necessary
to conduct more extensive computational tests before conclusions about the order or linearity
(about the perturbation) of the system can be made. The purpose here is to establish the
routine is operational and that it can in fact provide reasonable results between two steady-
state conditions.

The strongest criticizim of the proposed method of analysis probably lies within the
entrained flow prediction b{l kinetic energy exchange; the one-dimensional flow limitation
has required the traditional theoretical analysis of the problem to be modified and an empirical
coefficient introduced. This may mitigate the robust nature of the simulation approach and
require fine-tuning for a specific ejector configuration. Once this has been established,
however, the simulation permits characterization of the transient ejector behavior very quickly,
for a wide spectrum of operating conditions. If it determined the ejector time constants are
"small enough" so as to be neglected (relative to time constants for other propulsion system
components) then a quasi-steady flow assumption for the ejector mixing-region may be valid.
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8. CONCLUSION
Assumption Highlights

It should remain clear the intent of the proposed finite volume method of analysis
is to meet the combined requirements of

1. Thrust prediction for real-time simulation,
2. A predictive fluid-dynamic methodology, and
3. Characterization of turbulent flow.

As a result of the assumEtions and compromises that must be made to reach these goals,
two empirical constants have been introduced. The result is a simulation detailed enough
to allow a rational introduction of experimental data in the simulation, while at the same
time being of a simple nature; this is anticipated to provide a realistic candidate for
real-time simulation. Several assumptions made with this goal in mind (and with significant
impact on the algorithm structure) are worth repeating:

1. Primary nozzle and all free-stream conditions are known as a function of time.
2. Quasi-steady flow conditions exist at the inlet and diffuser.

3. Entrained flow velocity predictions are adequately given by the proposed kinetic
energy exchange mechanism.

Exploration of a step-function test case reveals that items 2 and 3 appear not to have
compromised the fundamental description of ejector physics.

Closing Remarks

The method of analysis for the description of transient ejector characteristics pro-
vides reasonable results for the single test case considered. As such, the method can be
concluded as viable if the specific intent of development is kept in mind. An operational
computer program has been based on the equations presented. Application of the method
to a broad class of ejector configurations and operating parameters will require exploration
into the sensitivity of the two empirical coefficients introduced in the course of the analysis.

As more detailed experimental and theoretical treatment on the theory of turblent
mixing evolve, it remains to make practical application of those results to the ejector
analysis. It remains that the basic turbulent flow control volume approach is an excellent
vehicle on which to test new (or modified versions of the present) method of turbulent
mixing characterization.

Solutions to some of the equations described in this work have, due to the limited
time available, been solved iteratively. There is considerable opportunity to decrease the
execution time of the method by replacing the iterative rotuines with analytic solutions.
Such solutions may be available in future work through application of, for instance, the
MACSYMA symbolic manipulator.
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Figure 5. Thrust Augmentation Profile
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(a) Real flow field (b) Assumed flow field

Figure 9. Transverse Velocity Distribution
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[ subroutine SEAFOR |

Compute the free-stream static

¢ DATA: Geometric data
Gas properties - and stagnation properties of the
Macro solution . flow

\

Compute primary nozzle dis-
charge conditions

Assume a value for the secondary
flow velocity,
Uy,

Y

»| Compute station 1s flow condi-
tions

\

Establish mixing region discharge
conditions. (The mass flowrate 1s
a function of the secondary veloci-

ty)

Compute diffuser exit conditions,
based on the discharge pressure
matching condition P3=Pg4.

Compare the mass flowrates at
stations 3 and 4
A= my - M,

M Aam<e ?

v, = u,,*4av

Y

A

Proceed with computation of
thrust, augmentation ratio, and
ejector efficiency.

RETURN

Figure 11. Steady Flow Solution Procedure
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PALANCE

FIELD VARIAELE SPECIFICHTIONS:
VIS = 303.97000  KHO1S = . 06858
VIF = B860.20000  KHOLF = . 06049
VE = 303.97000 RHD = 06757
UM = 473.20000 RHO = .06757
GEOMETRIC SPECIFICATIONS:
B = .13425
BC = .0168100
BSTAR = .0281333
BMAY = . 3900000
aLs = 9.3238000
ALp = . 4199800
KINETIC ENERGY BUDGET
TOTHL INFLUX XE: 17116507. 383
PRIMARY: 80B4624.157
SECONDAEY: 9031883. 227
kKATIO OF 1P/15: . 895
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FRIMARY:
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SECONDARY:
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Figure 18. Typical Kinetic Energy Budget
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[ Subroutine TEAFOR 4]

4

Internal function definitions and
parameter initialization

Compute the free-stream static

Gas properties
Nozzle flowrate

(DATA: Geometric data

»~{ and stagnation praperties of the
flow

y

Compute primary nozzle dis-
charge conditions

Update sccondary flow velocity,

Compute diffuser exit conditions
based on discharge pressure
matching; check continuity be-
tween mixing region and diffuser

Initialize virtual grid and finite
volume field vanables

Uy

Predict station 1s flow conditions

Y

N MODE = 1?
(Is flow ininialized ?)
Y

4
Predict mixing region discharge L

conditions.

\
| Compute diffuser exit condilions,J

\

Proceed with computation of
thrust, augmentation ratio, and
ejector efficiency.

RER@

Figure 19. Unsteady Flow Solution Procedure
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Appendix A
Development of the Integral Equations
Overview
A material volume of ¥(t) and surface S(t) can be described by four laws of motion:

1. Conservation of Mass: Based on continuity conditions, this is a statement that the
material volume is of constant mass.

2. Balance of Linear Momentum: Newton’s second law provides that the rate of change
of momentum is equal to the sum of body and surface forces.

3.  Balanceof Energy: The first law of thermodynamics describes the balance of internal
lus kinetic energy, the rate at which work is being performed, and the rate at which
eat is transferred.

4.  Creation of Entropy: The second law of thermodynamics dictates which of the energy
transport processes (that the first law provides) that are acceptable; the rate of
entropy creation is balanced by the sum of the rate of increase of entropy and that
transported through the material surface.

These laws are not derivable from a set of more primitive laws and are essentially axioms
supported by experimental work.

In the sections to follow the development of the control volume equations is given
for an arbitrary control volume with a uniform (but time dependent) motion in space.

Continuity

Conservation of mass for a material volume takes the form

i

— dv = 0 A.l

2J.° ( )
where d/dt is the total derivative. From Reyrolds’ transport theorem

d op
oy pdl = VEZ(IV + pu-ndA (A.2)
Vv 4 N

Reynolds’ theorem can also be applied to a control volume defined by a region Qand
surface I',

It

d op
— | pdV —dlV 4+ pl-ndA (A.3)
dtJa a ol o
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where U defines the surface velocity of the control volume, related to the absolute velocity
by

v =u - U (A.4)
Except for the total derivative terms, integrals over the region Q are identical to

those chosen to be instantaneously coincidental with the (arbitrary) region V; in other
words

op fap

—dlV = —dV )
I Sl 45)
df d
— dv # — v A.C
dlt vp dl np ( >)

but through substitution

d/’ d[ j{ .
— divVy = — V- ndA + U-ndA A7
clt Qp dt vp( rpl“l - rp“ L ( )
SO NOW
d
——fpdl/ + fp(u~U)~/sz = 0 (A.B)
dt./ao r - — -
Momentum

The net body force and surface forces acting on the material volume is balanced by
the rate of change of the material volume momentum

gfpudl/ = fpg(,ll/ + jgn-S‘dA (A1.8)
dtJv — v sT =

here, g is identified as the specific gravitational force; the general fluid stress tensor, S,
can be decomposed into a "pressure stress" and a "viscous stress" (deviatoric stress) tensor

[ O

= -pl + s° (A.9)

To obtain the momentum balance for a control volume, Reynolds’ transport theorem is
first applied to the total derivative for a material volume

1 )
(—fpudl/ = f——(pu,)(_ll/ + fpu(u-n)d/l (A.10)
dtJv — vol — — s — = -

and also to the control volume
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d o
—f pudl/ = f —(pu)dV + fpu([/-n)d/l (A.11)
dt/a — aol  — s — — =

where, again, we note the use of U in the latter. Once the arbitrary material volume is
extended to coincide with the control volume

d 1
—fpudv = (—fpudv + jgpu(u-n)d/l - jgpu(u-n)cm (A.12)
dtJv — dtJa — = - = -

It is now evident that

d
— | pudV

—fpu(u—l/)-n,d/l + fpg(ll/ + jgn-S(l/] (A.13)
dt/Ja — r - - T n = r= =

and therefore

)
— udV
dt np_

~fpu.(u—(/)-n,d/1 + fpg(.ll/'
ro - - - a

—%Iz'(;)i)(l/l + jén-S'dA (A.14)
: r

- r
Energy

Because textbooks and the literature are often inconsistent in the use of the term
"energy equation”, some clarification is worthwhile so that the present work is interpreted
correctly. Obviously, an energy-conversion law must account for all forms of energy within
and across the control volume. Confusion often arises since a continuous flow of mass
across a control volume admits two independent energy equations. In one case, the
mechanical power equation is derived from the product of the Navier-Stokes equation and
the particle velocity; this gives the so-called balance of mechanical power or transport
equation for kinetic energy. The other case involves the first law of thermodynamics and
is the general power equation, or, as viewed here, the general energy equation. It can be
shown that the heat equation is the difference of the mechanical and general power
equations; in the present work the heat equation can be transformed into a statement of
the entropy balance and will be covered in Section A.5.

With the first law of thermodynamics in mind, the energy per unit volume of a fluid
is the sum of the specific internal energy, e, and the specific kinetic energy, u’/2 For a

material volume this energy is balanced by the energy due to heat and work; the general
power equation is therefore

d lL2 R (- A -
— ) ple+— |dV = py-udV + pu-(n-S)yda - q-ndA (A.15)
dtJv 2 v .5 T~ s— ~
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Employing the logic used earlier in the extension of the material volume to a control
volume

d u? d uz) _?g ( uz)
— +— |dV = — >+ — |dV + +— [(u-U) -ndA
dt Vp(e 2) dt Op(@ 2 rp ¢ 2 (u-1) -

(A.16)
so that
d | .
— | ple+zu” |dV = pg-udlV + u-(n-S)dA - q-ndA
dtJv 2 a T - r-— - - a~ ~
1 5
-Pp e+§u (u-U)-ndA
(A.17)
From the definition of the stress tensor we expand the stress term:
fu-(n-S)dA = fu-(n-:;’)d/l - jgpn'ud/{ (A.18)
r— - - r— - r - -
and since the enthalpy is defined as
h o= e +2 (A.19)
p
then
2 2
ifp(m“——ﬁ)dl/ = - fp(mff——g)(u—U)-ndA
dtJa 2 p r 2 p) - =0 =
+ fpg*u(ll/ + fw(n-S’)dA
| r— - =
- ij/z-ud/l - g-ndA (A.20)
I - = r- =—

It is quite useful to assume the heat equivalent to the work of viscous forces to be
immediately transferred to the region where the forces occur. No part of that energy is
transmitted to the surroundings so its presence becomes nested within the other forms of
energy the governing equations provide a balance for. Furthermore, if gravitational effects
are neglected and like terms in the energy equation are eliminated, the energy equation
becomes
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2

Lol st) folr%)
— h+—-=JdV = - U-rdA - h+— -U)-
dat np( p rp"‘ - rp e 2 (L—L “) BdA

(A.21)

Alternate Energy Equation

In the absence of dissipative effects, an adiabatic ejector representation of the heat
equation is

d
a;fvpedl/ = - Ppl_f-r_zd/l (A.22)

Apply Reynold’s transport theorem to the total derivative for a material volume

d 2 -
—f(pe)d[/ = f~—(po)dl/ + ¢ pe(u-n)dA (A1.23)
dtJv vol /s - -

and also to the control volume
d ) -
—f (pe)dV = f —(pe)dV + ©pe(u-n)dA (A.24)
dtJa aol Jr - -

then
d d
— | (pe)dV = — | (pe)dV + P pe(u-U)-ndA (A.25)
diJv dtJa .8 - - =

and
d
— | (pe)dV = —jgpo(u—(/)-n(l 1 + jgp(u-n)d/l (A.26)
dt/a s - - - s - -

Since the enthalpy is defined as

p
P

h = (A.27)

then by rearrangement and substitution
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a p(h——e)dl/
dtJa P

b}
—%p(h—:—))(u—l/)wz(i/l - jgpu-nd/l
5 - - s - -

—fp/w-n - %pU-nd/] (1.28)
5 - S - =

I

An interesting observation extends from the steady-flow zero-reference velocity
simplification; the result is

0O = —j/;phu-ndA (A.29)
g2 L

which is simply a statement of conservation of heat content between two streams that mix.
Compare equations A.28 and A.21.

Introduction of the ideal gas approximation into the heat equation yields

g p(cpT-E)dV = —fpcp’]'v-nd/l - fplf'nd/l (A.30)
dlJa p - - s — =

Now, from the relations

p = pRT
c, = —X—R
y— 1
then
d \ ) f Y f;;
— —_-p|ldV = - )l vendA - U-ndA A.31
dt n(py—l £ 5[ y-l- - sp" - ( )

which simplifies to

d
< { L >d,l/ - —fp Y ovonda - jgpl/-/zd/i (A.32)
dt/aly-1 soy—-1- - s — =

and if the specific heat ratio is constant

{
-(—f pdl = —jg pyv-ndA - (y- l)jg plU-ndA (A.33)
dtJa s - - s’ — -

In the finite volume analysis of the present work this form of the heat equation is more
convenient (than the general power equation) because of the absence of the cube of
velocity.
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Entropy

Creation of entropy in a material volume is given by the balance of the rate of increase
of entropy and the entropy flux across the surface and, by definition, is a positive quantity,

d 1
a—fvpsdv + fs—q-nd/l 2 0 (A.34)

where the entropy flux has been identified as the quotient of the heat flux and temperature
of transport (this can be shown; see for instance, Appendix B). Reynolds’ transport theorem
is again drawn on to provide the extention of a material volume to a control volume with
local surface velocity U; the result is

I
a psdl/ + jé.ps(u—U)wsz -« jé,——_qud/l > 0 (A.35)
dtJa r - - - r

An interesting analytic excursion (see Apperdix B) shows the production of entropy is
given by viscous dissipation and thermal effects

S 1 1 VI
Ds _v.(fl) N ‘_‘(..,_) > 0 (A.36)
Dt p r pl p\ 1

where the viscous dissipation is defined as
p = (S-V)u (A.37)

It is evident that if the entropy balance is non-zero the result must be positive since the
production terms are proportional to the square of temperature and velocity gradients.
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Appendix B
Derivation of the Heat Equation
Overview

It is understood that the mechanical power equation is given by the product of the
Navier Stokes equation and velocity, and that the general power equation is formed by
application of the first law of thermodynamics to a control volume. Here, an integral form
of the heat equation is derived as the difference between the integral forms of the
mechanical power and general power equations.

Mechanical Power Equation

For an infinitesimal fluid volume the product of velocity and the Navier Stokes
equation yields

du

pu-—= = purg + u-(V-5) (8.1)

where the general stress tensor is composed of normal (pressure) and viscous components

S = -pl + S (B.2)

If gravitational effects are ignored and the total derivative written in explicit form, the
mechanical power equation becomes

1
pu-—=+p-{(u- VW) = ~(wV)p + w (VS (B.3)

Expanding the first term

L3 ot 2 2 ot (8.1)

then the convective flux term becomes
2 2

pu-{(u-Vyuy = (g-w(p“;)—%(g-vm (B.5)

and combining with the mechanical power equation results in
2

2 2 ‘2 20 >
a—,(p‘—‘;)-'f;(;‘;(c_ﬂ)o) - —(t_t-\'/)(p%+p)ﬂ_r(\7-§') (B.6)
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From the general form of the continuity equation

U.Z u2
—— — - .__v. 4+ .v
> 31 P u 2(9 )p (B.7)

and also from the relation

u? ] u? vl
V'{E(P§)> = (E'V)(F)—?‘—)*PE‘(V'E) (B.8)
then
o u? u? u’ , w”
57(07) = <—D;V-z_t—5(t_r\/)o> ?(‘—‘ V)p

2

2 2
'V'{&(“%)}*p%”e>~<t_L-V>p+z_t-W-§.‘>

(B.9)
this can be reduced to
a( u® v, { ( “2)> (- VYp+u-(V-S7) (B.10)
—p—] = -V-qulp— |- (uVv u- ' .
>it\P 2 “\P2 grvoproiitee
which, when integrated over a material volume V, yields
fa( w2 gy jé { ( “2\>19 f (Vp-V-S)dV
—|lp—= = -Pn-{ulp— (d5- | u- -~V /
yot\P 2 S22 N
(B.11)

This is the desired result; it is a statement that the integrated kinetic energy inside the
material volume will change if work has been done (due to pressure forces or viscous
stresses within the control volume) or there is a net flux of kinetic energy.

General Power Equation

The first law of thermodynamics for a system has been shown to be

d 2
— p(e+u—)dV = fpg>udV-+f we(n- S)dA—f g -ndA (5.12)
dtJv 2 v T s— T s— =

If the gravitational effect is ignored and Reynolds’ transport theorem applied to the total
derivative,
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fd{ ( +“2)}dv f ( +“2)u ,(14+7§/ (- S)dA f 1A
— e+ — g = - e+ — IS AN T AN a - a-r /
vdt b 2 sp 2 /- - s— - = sl &

(B.13)

which can conveniently be written

f" 5 PV fa( o)V f( “2) ud A f dA
— — ———— ) B =t —_ — ,l- —_— () .
yot\P % yoreP AP )te PRy

+fv-(u-3)d|/—fv-qd/1
Vv - Vv -
(B.14)
Now, since
Vo(usS) = u (VST - w Ve o+ =P Vu (B.15)

then

f 2 u ll/+f a()o)dl’ jg u n-udA jc en-udA
j— —_ C J— > e = — —— . —_ ) .
p ot P 2 v ol ‘ s P 2 )= - SF - -

+f(u-(V'S’)+¢—u-VP}dV
L= 2 2

- fv- gdl’ - an- (V- -w)dlV
v - v o -
(B.16)

This is the desired form; it is evident we can identify the mechanical power equation within
the general power equation.

Heat Equation

Recall that the heat equation is formed as the difference of the mechanical power
and general power equations; for the form of these equations as derived above, the result

is
0 :
f—-(pe)dl/ = —%‘pon-u,dA + fd)dl/
v ol s - = v

- fv'(/(lb’ - f/)n,-(v-u)dlf (B.17)
14 - Voo -
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or simply

—C—i—fpedl/ = f(q)—\“/-q—l’v-u)'il/
dtJy v = -

An important form of Reynolds’ transport theorem provides that

AngdV = /pQEdV
dt v DI

and therefore

c
L evg-0+PV-wlar = 0
/»/<th q-¢ —>

so for an arbitrary material volume

p.(;. + Pv-g" = ¢ —\J.(_I

Dt
Introduce
1D
Rl L V-u
v Dt -
'r& = _E_ + I)QB
Dt Dt Dt
SO
D D D D
p<7-_s_,>~£> v oopPPy o s
Dt Dt Dt Dt
Recognize that
q = —xVT
and
v-<KVT> - =X v
T > T
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SO

Ds ¢ T xV X .5

LS. Ly, + v

Dt pT pT</ ( T ) 7”( ) } (B.27)
Ds_o [xVIL _ ﬁ’.ﬂ_‘(ﬂ)z

= v< - } o7 (B.28)

The terms on the right-hand-side represent the square of velocity and temperature gra-
dients and are therfore always positive; this forms the basis for the second law. Clearly

Ds xVT

—_— = Ve 2 0 B .29

Dt < T } ( )
and since

q kT B}

- = - B .30

T T ( )
we finally obtain

Ds ) q)

O Y > 0 B .31

Dt (T ( )

Py
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Appendix C
Steady-State Nozzle Coefficient
Flow coefTicient

At an (isolated) ejector nozzle exit the steady-state mass flowrate is, for a uniform
flow, given by

m = puA (C.1)

Of interest here is a more convenient form of this relation which introduces stagnation
field variables and the flow coefficient, &.

Stagnation conditions are incorporated by the product

1 = JrEa-a .2
m = pPgyCo PoCCo (C.2)

and identify the flow coefficient
m = pecyoAP (C.3)
The flow coefficient can be expressed in terms of the Mach number

o = mM2< (C.4)

PocCo

but a more convenient relation uses
c u
M= = = (C.5)
Co Co
so the expression for the flow coefficient becomes

- BE-E)

To complete the desired form of the flow coefficient we recognize the isentropic pressure
ratio
P (Pl)v
b (D (C.7
Po Po )
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and therefore

- ()

As a final step, introduce

1

<t

P v [ bar)
=) =\ (C.9)
so that

2 5

()2 e ~
- (@)

Aerodynamic choking

Channel flow is considered aerodynamically choked if the normalized mass flow rate
through a sectionreached a maximum. Because the fluid stagnation properties are assumed
constant, the flow function has the functional form

¢y
$ = f(—) (C.1D)

Co
(and represents the functional form of the normalized mass flow rate).

If ¢ is a maximum so must also its square; we obtain the condition for choking that

ey (C.12)

d(B?) o
where

_ (C) oL

B - - (C.13)

The square of the flow function is now

e - arif 2
®* = B (Y_](l B)) (C.14)
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which simplifies to

and the derivative is

d(d? 2 2 + ]
( ) = O = 2 [3y~l {__ _ Y B}
dp v-1 -1 y-1
Since
B # O
then it is clear
Yely o2
-1 y—1

and therefore the condition of aerodynamically choked flow is that

or

()
P,  \y+l

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

When this result is compared with the expression for the local Mach number we find the

trivial result that sonic conditions are reached when the flow is choked.

Summary

Steady-state mass flowrate through the primary nozzle of the ejector is given by

m, = poCoA®

where
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Appendix D
Alternate Mass Flowrate Equations
Summary of Relations

The literature reflects the use of several different forms of the mass flowrate equation;
the most common are gathered below:

Po y-1/2v< 2 ( f’-’ Y_l/v>>)/2
cAl — ——11-{-=- D.1
b (P> y-1 (PO ( )
2YRT voL\ LR
m o= pAl Y of y o[ L > (D.2)
y- 1 Po kK

- i’ﬁ(.’f.)'”{ 2y ( P H/V»W p.3
" TTo\Po) \R(-D) "(FZ) (05

For the present work, the mass flowrate equationis that given by the derivationin Appendix
G:

3.
i

PA

= ===/ oV M) (D.4)
0
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Appendix E
Change in Entropy due to Mixing

Overview

In situations where multiple solutions for the Mach numbercan be extracted from
the momentum equation, the "correct” answer is quite often given by that whose circum-
stances are in collaboration with the second law of thermodynamics. For a steady-state
flow, the form of the second law takes on a convenient form and is derived below for
interest and the completeness of this report.
Derivation

For an ideal gas, Gibbs’ relation gives that

1T P
ds = C,Lil-p¢ (F.1)
! r
If the gas is thermally and calorically perfect, then
- Y - X
C, = ——R = const (E.2)

and integration of the previous result gives

S,-5 T P
2o —Y—ln(%)—m(——') (F.3)
R ’Y‘l ]0 Po

Consider steady-state, steady-flow as an example; the integral entropy balance yields

/psu-ndA 2 0 (F.4)
L

so from the definition

dm —

a4 - Teun (£.5)
then

—frsam > 0 (E.6)

For one-dimensional flow
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~SpMp = Ss Mg *Spmy 2 0 (E.7)

we obtain
AS | g s Dstig z: 0 E.8
Mp, PL S e Pmpy (£.8)
Because
Mg, = M,=np, (E.9)
then
AS M, M,
= -5, -S 1 |+S,— 2 0 :
Mmpy i Sl(mm ) zmm (£.10)
and so
AS m,
= —(5,,-S + —(S,- 8 2 0
— (Sp s1) mm( 2 s1) (E.11)

By application of the ideal gas relation

T Pp
st () e(2)
Rmp, y- I I'si Psy,

: T
el ) )
mp\\y—1 Is P s
which simplifies to the form

AS 'Y 7‘51 Y 1712 '1‘2 f112 PZ
, = In + - In| - - —In
Rmp, y-1 T p Y- 1\ me, I s Nipy P py

This can be re-arranged in terms of the mass entrainment ratio

AS T4 T, Mg T m P
. = Y ln(,,‘l)+ hi In(,,2 |+ A ( ,‘l)ln(, 2)— 2 1n z
Rmp, y- i I py y- I I'sij vy 1\np I sy M py F ey

AS T, m T m P
S | ]n( ,2)+ Y ( ,5')111(,,2)— T2 | =2 (F.12)
Rmpl Y—l 7p| Y"I I p I\f;l M p, Pl’l

Introducing the entrainment ratio
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mg,

o= (£.13)
then we have the desired result
AS v T, Iy ( T, P,
= In + In -(l+wW)In| — 2
Rimp, vy-1 (Tm) y- I T s ( 2 Pp (£.14)

< 130 >



Appendix F
Mixed Flow Fluid Properties
Basic Relations
Fluid properties for the mixed flow can be estimated through application of Dalton’s
law of partial pressures to an ideal mixing process. We summarize for convenience here

relations extracted from the works of, for instance, Addy et.al.[1981] or Minardi[1982].

The specific heat is given by

1 Cposl
Comp = Cpop ( ){lw 22 (F.1)

l+“’ 'p.l’}

where the specific heat is related to the gas constant by

Y .
C = R F.2
p (Y_l) ( )

The equivalent molecular weight is given by a similar relation

Mp
Muyg = Mp(l+p) 1+“—M_—~ (F.3)

5

The specific heat ratio is

M,

I+
1 -1 ‘
- =1 —{Y” > M (F.4)
1

yglyp-1} M
YP +|J_._§__’;___‘.£
Yr(YS‘k)Ms
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Appendix G
Flow Functions

Overview

Manipulation of equations is simplified (and the potential for errors reduced) when
commonly occuring expressions are introduced as functions. In this appendix five
expressions with physical significance are derived; they are:

1. Steady flow stagnation temperature ratio

2. Steady flow isentropic pressure ratio

3. Steady flow isentropic velocity ratio

4. Steady state isentropic area ratio

S. Mass flow function

Steady flow stagnation temperature ratio

For a steady inviscid flow with negligible body forces the energy equation for a
streamline is

w?
ez o= hg G.1)

where A is the stagnation enthalpy. This equation does not imply the flow is isentropic,
only that there is negligible heat transfer across the control surface. Introduce a perfect
gas so that
h = c¢,T+const (G.2)
Puv = RT (G.3)

where P is the thermodynamic (static) pressure; also

c, = YR/(y-1) (G.4)

c® = (8P/op), = y(oP/ov), = YyRT (G.5)

where cp is the specific heat at constant pressure and c is the speed of sound. These results
provide

ey T= = o7 (G.6)
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o 1u? _ eyl .
C2 2C C2 ( . )
so that
Ty 1 u®c?
—_ = l+_
T 2c%c,T
1 -YRT 1
= 1+=-M*1—(y-1)=
> VR (y )T
-1
= ]+Y M2 (G.8)
In functional form this is written as
Ty
=2 - Loy (G.9)

Note that no specific assumption of isentropic flow was made.
Steady flow isentropic pressure ratio

In a steady isentropic flow there exists a convenient relation between temperature
and pressure

)

(
To  [Po
= - (_) (G.10)

and thus

i

P ~ v
To {1+Y M?} (C.11)

SO

Po
P

Ly MY = [y M (G.12)
Steady flow isentropic velocity ratio

It is useful in the analysis of choked flow to invert the isentropic pressure ratio
equation so that
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u 2 Po\Y Y
- = Y—_—l' - -1 (G.13)

this can be rearranged to yield

li B (PO)Y_UZY\/_Z__<1_(£)V_”V} 14
c \P v- I Po (C.14)

A characteristic pressure ratio is that given by the quotient of the stagnation pressure
and the static pressure,

Po

NPR = = (G.15)
and we recognize that, as a general rule, P < Pg, then NPR > 1. The isentropic velocity

ratio is now
_ 7 y-H/y
ororn ) ]
vy NPR

[4(Y. NPR) (G.16)

u
Cc

Since the speed of sound can be written as a function of the nozzle pressure ratio,

c (ﬁ) (G.17)

then an alternate expression is

o \[i‘“—(/v/’/e)%‘} (C.18)
Co vy-1

Steady-state isentropic area ratio

For a steady-state flow the condition of conservation of mass yields the mass flux
ratio

= (G.19)

where an asterisk denotes sonic conditions. From this ratio
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Palls p.c._l_poco
pu pocoM pc

1/y-1 1/y-1
() )
v+ 1 MY y+1 2 2
NG
) M(v+l) (]+
{C=) (R
= — 1+ ———
Mily+1 2

= fs(y.M)

Mass flow function

Y-

(5')

1.
Ar*)
2

From the definition of the mass flow rate

vAP
RT

then

l[_qv

RT, T co °

v Tov
RTo T cg

Since the velocity is given by

i

v = Mc

then

| )
mo gy [y Tec
PA RTo 1T ¢y
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and the temperature ratio

T_f) = 1+Y_tiM2
7 2

Co T,

C T

leads to the result

(G .24)

(G.25)

oo oM .\/1«-Y_l,w2
P RT, 2

Summary

)

!
wﬁf(,(Y.M) (G.26)

Five dimensionless functions have been derived, each associated with a specific
nondimensional physical meaning derived above; they are:

f. = 1+

3 = <1+Y"1A42>WY4
3

fa

~
I
Z| -
—_—
N
<
+ [N
N
VR
+

PO y-1/2y ? /) y-1/7v
B VEDE)T

(56-5)
o)

fo = M\/v(wv
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Appendix H
Integrals of Self-Similar Profiles
Introduction

Specific assumptions for the dimensionless form of the self-similar temperature and
velocity profiles will avoid cumbersum numerical integration schemes in the final analysis
(and in the computer code). This appendix provides an assumed form of the various profiles
for the present work and the results of integrations of them. Some of the more difficult
integrals have been explored with the MACSYMA symbolic manipulator on the
NASA/Lewis Vax.

If we consider the jet expansion characteristics of Figure H.1, then it is evident two
expressions should be constructed for each self-similar profile, one for Region I and the
other for Region II. The basic form of the non-dimensional profiles are given by:

1.5

(1-8"%)% ; 0o<g<1, £>1
d(r) = 0 I <g<E, £>1 (11.1)
(-8, 0<g<E, E<
1; 0<g<t’, £>1
A(E) = 0; £ <§<f, £>1 (H.2)
1; 0<g<§, £<I1

Application to integrals incorporating these profiles are given in the sections that follow.
For the case of analysis in the present work it is assumed that

£7= 1. (11.3)

Basic f; Integrals

Several of the velocity integrals are ccmmon to many of the self-similar profile
integrals, so it simplifies the presentation to summarize them. First, set

o= (1-8") (H.4)
from which

jﬁ/ldg = +0.258%Y - 0.887° + & (H.5)

f(l—/,)dg = —0.258% + 0.887° (11.6)
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. 11087 -5608°°+ 11558*- 1232825+ 770¢
ds = >
[ r3az - (H.7)
1187 -568°°+77¢*
- f)°dg =
f( fi) ag = (H.8)
_ 22087 - 11208%%+ 19258~ 1232823
[a-ras - - B 1920 1 125% (11.9)

E; Integrals

Integral evaluation distinguishes between Region I and Region I values, difference:
residing within the limits of integration in each case. Figure H.1 illustrates the variables
used.

Region II coefficients

I

f/\dS f(l)(ls f(O)di = ] (4.10)

i

; ! £ h
E, j;(l—/\)dg - fo(O)dg + fo(l)dg = £-1 (H.11)

Case whereb > B

£ N
EF, = f(l)dg = £ (H.12)
0
£
E, = f(O)ag - 0 (H.13)
0

Region I coefficients

Inregionlb is always less than B, but account of the potential core region requires
a modification of the lower limit of integration (see figure H.1)

n
Ady = 1-14 (H.14)

Mo

£

=~
~
Il

n R
f(l—/\)(ls, = - (H.15)
No
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Fj Integrals

Region II coefficients

£y

F,

i

fj/“bd% fol(l)(fl)di*“flg(O)dg

+0.25(1)* - 0.8(1)*° + 1

= 0.45

14 i £
fo(l—/\)wz fO(O)(fl)ds . fl(O)(O)ds

=0

Hereafter, elimination of the integrals of ’0’ can be made by inspection.

Fs

Fa

13 i
[irc-eyds - [la-roas
0 0

~0.25(1)*+0.8(1)*°

1-F, = 0.5

£ 3 .
[a-ma-ea - [fag = &1

Region I coefTicients

F

0
f(l)(l)dﬂ

(Mo} +{1-0.8(1)*°+0.25(1)")+ {0}

M+ 0.45
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Iy = fo(l)(l*/.)(“l

= 0.8(1)""-0.25(?*

= 0.55 (H.22)
F, = 'ﬁn(l)(l)di = -1 (H.23)

Gj Integrals

Region 11 coefficients

£ . ! .
f AP dy = f A7t
0 0

L1IOC1) =560 1)+ 1IGS () = 1232(1)* % +7701

770
_ 243 486 1 24
770 1540 (/.24)
¢ , ) )
G, = j./\(1—¢)2dg = .f (1-4)dt
0 0
LI’ -sen)terr ()t 320 640
(44 770 1540 (/11.25)
£ |
C, = ;{f A(d-dP)dE = 2j‘(¢-qﬁ)dg
0 0
_ q?<220(1)’—1120(1)““+1925(1)4~1232(1)“”} 414
‘ 1540 1540
(H.26)
G, =0 (H.27)
£ . £ .
C, = Jﬂ (1-A)Y(I-d)'ds = jﬁ (d:r = (£-1) (H.28)
0 1
G, = 0 , (H.29)
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Region I coefTicients

H; Integrals

G,

G

Gs

0 b 243
= 111+f<1>”1 T
f%( i J, voaen o™ 770
! 320
= 1-¢)2dn = ——
fo ( ) e 77¢
! , 114
= 2f -7 ydn = —-
o ¢ an = 1530
= 0
n .
= f(])dn = 11— |
1
= 0

(11.30)

(H.31)

(H.32)

(H.33)

(1 .34)

(H.35)

Presentation of the H{]integrals is given in terms of an arbitrary upper limit to the

integration; this relates to t

Region I coefTicients

H

i",

It

Il

f;/\(l—m%ig = j:-

(130980 - 92408 %% + 224408 - 190405°°°y /13090

~

fz/\(4>2~<t>")ds, NG I ST
0 « 0

_(37ar" ' - 20408" " w1808

108808 e 84158 - 2992877y /1870
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£ , , v , ,
Hy = f/\(3q>—()¢"+34>")(15, f A3 -6¢%+3d7 )t
0 0
= (392780 =orro08 P v 729308
~856808"°" + 392708 %) /13090 (H.38)
¢ 3 E‘ 3
H, = f/\cbdg - f 7 dE
0 0

= (2618877~ 184808 "7+ 561008" - 952008

+98175E" " - 6283287 + 261808 ") /26180 (H .39)

£ 1 £
- _ RN DT SN BrIa
He = fo(l AYCL =)k j;.(l ) dE fl(l)dg

- (é—l)+( w3 ) 16
13090 (/1.40)
3 ] ) ] ) )
e = ?f(l—/\)(4>2-¢")d?, = 2[ (¢%-d7)dg
0 t'
243
= —-—H ,
(1870 2) (H.41)
' , , 2var
= 3b-6b7+3d7)dE = ( : ~//.) H .42
", fE « csehyay = (S, (H .42)
b OLO |
1, = b ds = + /1, /.47
s fi ’ (26]80 ‘) (71.43)

Region II coefTicients

£

£ . . .
f/\(l—m"ds, = f/\(l—d>)"d$,
[¢]

]

I,

i

I

~{1309£'°-9240£%% + 2244087 - 190410£°°) /7 13090
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Figure H.1 Non-dimensional Mixing Region Profiles
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Appendix I
Remark on System of Units
Introduction

Few applications of engineering analyses appear exempt from the need to clarify the
system of units involved in calculations. Typically, confusion extends from translating back
and forth between force, mass, and pressure; the usual remark is that a "consistent” system
of units must be used in analysis. In the present work the Engineering English system of
units is used.

This appendix is intended to summarize the 6 systems of units commonly used in
engineering analyses so that no confusion will exist over the definition of Engineering
English system for the present work. The difference in each system of units can be described
by first identifying the fundamental units in each case, then categorizing each system by
observing:

- the magnitude of the fundamental units,
- the choice of the physical nature of the fundamental units
- the choice in the number of fundamental units

The magnitude of the fundamental units originates from the metric and English
systems. Because metric units are estabiished primarily by international conferences,
English units are related to them by several convenient conversion factors. Conversion
factors exist within the different English systems and reflects the varied historical devel-
opment of the overall system.

All the systems include length and time as defined quantities - the physical nature of
the fundamental units indicates whether mass, force, or both are defined within the system.
In an absolute (also known as physical) system the mass has a defined fundamental unit
and force units are derived on the basis of Newton’s second law. An absolute system is
one for which measurements made in terms of the fundamental units are independent of
the location of the measurements. In the gravitational system, however, a standard weight
(standard force) is defined and mass units are derived. Note in either of these systems only
three defined units, known as primary units, are required to define the system, with all
remaining quantities derived (secondary units). The engineering system of units in unique
in that both mass and force are defined. In this case the total number of primary units is
four and consistency of units is provided by the introduction of a universal constant in
Newton’s second law.

From the three general systems described above, six specific systems of units can be
identified; the absolute MKS, absolute CGS, metric gravitational, English gravitational,
absolute English, and engineering English. In each case force, mass, length, and time are
related by newtons second law

F = k(ma)
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where k is a constant. A discussion of each system follows.
Absolute MKS

Also referred to as the International System (SI), mass, length, and time are defined
by units of kilograms (kg), meters (M), and seconds (s), respectively. The unit of force is
a Newton (N). A I Newton force will give a mass of I kg an acceleration of 1 m/s4- This
system is the most popular Metric system and was adopted for international use by the
Ninth International Congress on Weights and Measures in 1948.

Absolute CGS

This absolute system is very similar to the absolute MKS system. The unit of mass
is defined as the gram (g), the unit of length is the centimeter (cm). Forcs units are derived
and given in dynes - no abbreviated symbol - where 1 dyne = 1 g cm/s<-

Metric gravitational

Since weights are measured by the force of attraction that a given mass experiences,
a standard weight for the metric gravitational system is defined with the introduction of a
standard gravitational constant gc. The unit of mass, the kilogram-mass (kgm), is derived.
Using the meter for units of length and the second for time, the kilogram-force (kgf) is a
defined standard weight for the attractional force exerted on 1 kg mass by the earth where
the gravitational constant has a standard value of g¢c =9.80665. Note a total of three defined
units and one derived.

English gravitational

Making use of the foot and second that is common to all English systems of units,
the English gravitational sl);stem differs from the absolute system in the same way the
metric graviational does. That is, the unit of force is defined as pound-force (Ibf) and the
unit of mass is derived as the slug - no abbreviated name. From Newton’s second law we
obtain 1slug = 11bfs /£t. When a force of 1 Ibf is applied to a mass of 1 slug it will yield
an acceleration of 1 ft/s<.

Absolute English

This system is also based on three defined fundamental units; feet (ft), seconds (s),
and poun%—mass (Ibm). The units of force are derives as the poundal, where 1 poundal =
1 Ibm.ft/s<.

Engineering English

This system is based on four fundamental units for length, force, time, and mass. As
before, the units of length and time are feet and seconds respectively, but the unit of force
is the Ibf and the unit of mass is the Ibm. Compatability of units is provided by the intro-
duction of an English gravitational constant g¢ into Newton’s law. This is the system used
in the present work !
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F=m(—1-
g

where g = 32.174 Ibm ft/1bf s2. So for this system, rather than a unit force imparting a
unit aceeleration to a unit mass, a unit force causes a unit mass to accelerate with a value
equal to the gravitational constant. It should be noted that the constant g is numerically
but not dimensionally equal to the standard gravitational acceleration g. Two problems
arise that often lead to confusion with this system: (a) g is often thought of as g, implying
the problem depends on terrestrial graviation when it may not, and (b) the ratio g2/8c
obtained by setting a=g in Newton’s law is often approximated as unity and discarded,
leaving the ag)gearance that the problem is not a function of gravitational effects where it
might indeed be an important part.

Conversion Between Systems

The present work uses the Engineering English system of units. A summary of the
"hierarchy" of the systems in iiven in Table I.1. Comparison of the MKS and Engineering
English units for quanities of key interest are given in Table 1.2. More detailed conversions
between the various systems are provided in Table 1.3.
Illustrative Calculations

Some illustrative calculations may seem trivial, but are quite illustrative in following

the Bresence (or absence) of g when, for instance, the details of the computer program
are being traced.

Gas Constant The gas constant for air at "standard” conditions can be computed from

R = R/M
where
- [t? b, )
R = 49,720 —_— ;
Rszlbmole;I

b,
M = 28.98 { }
lbmole

Now

_ 49,720 {ft? lbm r"bnxole
28.98 SZRlbmole lbm
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ft?

\ZR

)

=1715.66

Specific Heat For calculations in the computer programs the specific heat at constant
pressure is given by

so for the data of the previous calculation and a specific heat ratio of 1.4

1.4 . Ft?
c. = 1715.66 = 6004.81 ——
P 1.4-1 s?R

but this does not immediately conjure the "0.24" value one might expect. That value is
obtained by conversion of units

t* 1 Btu | lb;s’
o= 600481l _ — — !
SR 778.61b,flg,1b, [l

i)
Il

Btu
b, R

0.24

Sound Speed For an ideal gas approximation the speed of sound is given by
c = JYRT
so for the data

vy=1.4
1T =759.67 R
R=1715.66 ft°/Rs”

then

o
It

Y
\/1.4('/'{)'().()'/)(l’/li)‘.()()) < /—tl\’>

1350.80/ft/s
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Gas Density Consider an ideal gas at a pressure of 4233.6 lbf/ft2 and a temperature of
300 F; the density is determined from

P/RT

_ 4233.6 b,/ ft?
1715.66(759.67) \(fL2/s2R)R

p

lb,;s®
0.0032483

t4

To be in a consistent Engineering English system of units the factor of g. must not be
dropped

i

P (P/RT)g.

[lb,s?lbnft
0.0032483(32.174) { ——F———

\ ft* 1b,s?

m

lb
0.1045 —
f

t3

Of course, in the English gravitational system the derived mass is the slug

lb,s?
ft

1 slug = 1

so the first result is immediately recognized as

slugs
13

p = 0.0032483

Stagnation Pressufe The stagnation pressure for a 300 F gas flow with a 150 ft/s velocity
and 4233.6 lbf/ft static pressure can be computed from

Py, = P +

SO

~o
[
I
N
N
W
w
o
o
—

b, 0.1045(150)? [ b, 17
2 2 12 2
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lb, e b,
Po = 4233.60(—) + 1175.63 5
e ft—s*

and the inconsistency in units resulting from the ommission of g; correcting the density,
then

2

pu
Py = P+
° 29.
1175.63 [ lb,
= 4233.60+ ———— (—2
32.174 <_ft2>
b,
= 4270.14 —
fte

Note that computations in the Gravitational English system do not, by default, require
an explicit inclusion of a numerical value for g, since it is unity.

Stagnation Temperature Correction of the density for stagnation temperature calcu-
lations is done the same as in the stagnation pressure case

u’

2¢,

7'0 = T+

Kinetic Energy of the Flow This quantity has the units of work since the "mass" in this
case is a flowrate term

KE =
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Table 1.2 Summary of Enginecn'ng and MKS Systems

Quantity symbol English MKS
Length L ft m
Time t s s
Mass m by, kg
Force F Ib or Ibg N
Density 0 by /1t kg/m3
Dynamic m lb)r-s/ft2 Ns/m?2
Viscosity
Kinematic v ft2/s m2/s
Viscosity
Pressure P Ibf/ft2 N/mZ2
Work, Energy W Ibe-ft N-m
Power W Ibeft/s N-m/s

Note:
b, ft l kg-m

= 32.174
Je 1o, s? N -s?
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Appendix J
Computation of Nozzle Exit Static Pressure

Introduction

Instrument data for the primary nozzle flow conditions has been assumed to be for
mass flowrate, stagnation temperature, and static pressure. From this information the
velocity, static temperature, and static pressure for the primary nozzle can be computed.
However, if stagnation pressure is given rather than static pressure the analysis for primary
nozzle conditions (given in the main body of this report) must be modified; the details for
this are given below.
Derivation

The nozzle pressure ratio can be given by

p 1 \WGeD
L (1 —Y—IWJ
P 2

so the Mach number is

- ET

Combine this result with the modified mass flow-rate expressions of Appendix D to obtain

W 1 2 PoNYHY PPy YRy
-~ = P, <Y o -1 _°
A RToy-1\\ P P
and after re-arrangement
-2 ALl
Vw5 - (3)-(5)
A) 2y P2 P P

If the stagnation pressure, stagnation temperature, and mass flowrate are known, then this
equation contains only the pressure ratio as an unknown; in polynomial form

AR

vyl

2
£ () (5 -
Po Py A) 2y P}
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Solution

The root of the equation above provides the solution for the nozzle pressure ratio
and, since the stagnation pressure is known, the static pressure computes directly there-
from. Because this is not an ordinary polynomial which benefits from a simple analytic
solution, a numerical approach is reccommended. Figure J.1 provides a listing and sample
calculation for the APL computer program that provides this service.
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Appendix K
Overview of some PLF ejector data
Some geometric and instrumentation data

In the evaluation of the methods of analysis outlined in the text, it is necessary to
have data with which to compare theoretical predictions. Information on some past
NASA/Lewis PLF ejector tests have been made available to the present work. Figure 1
summarizes some geometric and instrumentation data believed to apply to the DeHaviland
ejector tests conducted at the NASA/Lewis PLF facility.

Knowledge of the type of test data to be collected is fundamental in shaping the
input requirements of practical computer programs. For the present work the requirements
developed in the text (see chapter 5 of the text) have been based on the type of information
one might expect from the PLF.

The general geometric characteristics of the DeHaviland ejector are also shown in
figure 1. Use of this data has guided the geometric data requirements for the analysis as
illustrated in Figure 11 of the text.

Some performance data
Performance data used for comparison with the theoretical predictions is shown in

Table 1 - 3. The nomenclature for the computer printouts is defined (to a limited extent)
in Figure 1.
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Table 1. Data Summary for Preliminary PLF Tests

Reading | F-S Temp NPR Thrust PHI m
223 769.70 1.35 945. 1.86 18.70
239 760.60 1.46 1231. 1.87 21.85
225 761.70 1.70 1725. 1.80 27.27
237 763.50 1.82 1977. 1.79 29.66
227 763.50 2.06 2471. 1.78 34.26
235 765.50 2.27 2910. 1.78 37.97
229 763.50 2.38 3066. 1.74 39.96
233 758.40 2.56 3458. 1.76 43.22
231 764.80 2.79 3839. 1.72 46.97
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Table 2. Data from PLF Test #223

NASA-LEWIS  PRELIMIMARY DATA 11/30/87  PDPILTWO  REC 071687 19:08:50.656 FAC PLF PGM D003
POWERED LIFT FACILITY SINGLE-SIDED EJECTOR FOR SPEY/E7 MODEL RUN 9 ' .
- S LVE ANGLE 90.0 DEG EXIT-RAKE 1 LOCATION  0.00
EJECTOR NOZZLE TYPE NOTCHED-CONE NOZZLES FORWARD DUCT VA EXIT-RAKE 1 LOCATION 0.0
OPTION 1 SUMMARY
FDVA NPR PRIN PR6 P CYCLES ) .
0 90.0 1.354 1.426D 1.370 769.7 10 o= 2067 89
WNOZ CDN Xn xn2 XIE XI6 i} ~ - o4cs o
1951 18.70  1.0435 945.D 938. 532. 541. ?; 13594 Pa- 277786
PHINET  PHINET2 ANET6 XMSTD H P TA
1.7776D 1.7651  1.7469D 967.D 5.97D  14.36 542.8
WF PRS XI5 ANETS XIIN  ANETIN
0.05 1.378D 546.D 1.7308D $73.D  1.6491D
NASA-LEWIS  PRELIMINARY DATA 11/30/87  PDPIITWO  REC 071687 19:08:50.656 FAC PLF PGM D003

POWERED LIFT FACILITY SINGLE-SIDED EJECTOR FOR SPEY/E7 MODEL RUN 9

EJECTOR NOZZLE TYPE MOTCHED-CONE NOZZLES FORWARD DUCT VALVE ANGLE 90.0 DEG EXIT-RAKE 1 LOCATION  0.00
EXIT-RAKE 2 LOCATION  0.00

OPTION & EJECTOR-HOZZLE CALCULATIONS

01 02 03 04 0s 06 o7 o8 09 10 11 12 A

PN 18.44 18.82 18.88 13.76¢ 18.66 18.99 18.98 18.80 18.92 18.69 18.85 18.70 1a 79

PTH 19.18 19.27 19.34 19.40 19.44 °19.48 19.49 19.56 19.5¢ 19.57 19.56 - 19.58 19.45

PRTN 1.336 1.342 1.346 1.351 1.356 1.357 1.357 1.361 1.360 1.363 1.362 1.363 1.354

DELPTN 9.61D 0.52D 0.45D 0.39D 0.35D 0.31D 0.30D 0.25D 0.26D 0.22D 0.23D 0.21D 0.34D

DELPTN/PTS 0.031D 0.027D 0.023D 0.020D 0.018D 0.016D 0.015D 0.012D 0.013D 0.011D 0.012D 0.011D 0.017D

DELPTN/(PTS-PR) 0.113D 0.097D 0.084D 0.071D 0.06%D 9.057D 0.055D 0.045D 0.047D 0.040D 0.042D 0.039D 0.063D
DELPTN/QS5 0.821D 0.705D 0.611D 0.521D 0.466D 0.416D 0.406D 0.3532D 0.344D 0.295D 0.310D 0.286D ¢.459D

AT TLRMIT T
SRIGINAL TASE

OF POOR QUALITY
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Table 3. Data from PLF Test #225

NASA-LEWIS PRELIMINARY DATR 11/30/87
POWERED LIFT FACILITY SINGLE-SIDED EJECTOR

EJECTOR NOZZLE TYPE NOTCHED-CONE NOZZLES

OPTION 1 SUMMARY
RUN FDVA NPR PRIN P
9 90.0 1.697 1.801D 1
W WNOZ CDN xn X
27.45 27.29 1.0056 1725.D 17
PHINET PHINET2 ANET6 XMSTD
1.7835D 1.7773 1.7675D 1765.D 6
WF PRS XIS ANETS X
0.06 1.726D 981.D 1.7583D 10
NASA-LEWIS PRELIMINARY DRTA 11730787

POWERED LIFT FACILITY SINGLE-SIDED EJECTOR
EJECTOR NOZZLE TYPE NOTCHED-CONE NOZZLES

OPTION 4 EJECTOR-NOZZLE CALCULATIONS
01 02 03 04

PN 22.65 23.26 23.3¢ 23.17
PTH ’ 23.92 24.15 264.26 264.30
PRTN 1.665 1.681 1.688 1.692
DELPTN 0.87D 0.64D ©0.54D 0.48D
DELPTN/PTS 9.035D 0.026D 0.022D 0.020D
DELPTN/(PTS-PA)  0.083D 0.061D 0.052D 0.047D
DELPTN/QS 0.738D 0.544D 0.463D 0.413D

PDP11TWO

REC 07716787

FOR SPEY/E? MODEL RUN 9
FORWARL DUCT VALVE ANGLE

R6 1P CYCLES
715 761.7 10

2 ¥1E XI6

19. 967. 976.
H PA TA

.46D 1¢ .36 540.3
IIN ANETIN

16.D 1.6985D

PDP11THO REC 07-/16/87

FOR SPEY/E7 MODEL RUN 9
FORWARD' DUCT VALVE ANGLE

05 06 07, o8
23.02 25.54 23.54 23.26
264.33 2:.48 26.51 24.5%
1.69¢ 1.706¢ 1.706 1.708
0.45D 0.31D 0.28D 0.26D
6.018D 0 012D 0.011D

0.043D 0.029D 0.027D

0.385D 0.261D 0.236D
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19:13:08.54% FAC PLF
90.0 DEG EXIT-RAKE 1 LOCATION
EXIT-RA¥E 2 LOCATION
19:13:08.5644 FAC PLF
90.0 DEG EXIT-RAKE 1 LOCATION
EXIT-RAKE 2 LOCATION
09 10 11 12 A
23.43 23.06 23.33 23.08 23.22
264.53 264.49 24.5¢ 26.51 264.38
1.708 1.705 1.709 1.707 1.697
0.25D ©0.29D 0.24D '0.27D 0.41D

0.010D ©.010D 0.012D €.010D 0.011D 0.016D
0.025D 0.024D 0.028D 0.023D 0.026D 0.039D
0.219D 0.215D 0.248D 0.206D 0.231D 0.347D

PGM D003

0

PGM DOD3

Q
Q

.00
g.

00

.00
.00



Appendix L
Jet Boundary Streamline

Equivalent Secondary Mass Flow

In the exchange of kinetic energy between mixing streams, quantifying the kinetic
energy gained or lost by a single stream requires definition of a dividing streamline for the
flow. Figure 1 marks the divi ing streamline with the jet boundary parameter b°. This is
different than the boundary defined by point f on the figure, which simply marks the vol-
ume consumed by turbulent jet expansion.

The dividing streamline easily derives from the mass flow relation
m = f pvdA

from which we have
B/b
2NW(B=by)p, s, , = 2NWbpzf vd§

b'/b

Completing the integration

B/b %2
f vad: = {v,(1-®)+v, d)dt = Frv+Fyu,+ FLu,
b /b L
where
Fiy = 0.45-(+0.258}-0.882%+¢))
Fy = 0.55-(-0.258%+0.8:2%)
Fq = §,;-1

Substitution and cancellation of like terms yields
BT CET ek e, = 0

where
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-y

c, = 0.25(Wp, 27 Ve.2)

C, = 0.80(Vy.2"Up.2)

Cz3 = Unp,2

C, = p—]—sB_bouol—c,—cz—ca-(é—l)u
po b, ' b ¢

The root to this equation provides the location of the dividing streamline, b*, at desired
axial location, station 2.

Numerical Solution
The polynomial describing the dividin streamline location does not have an conve-

nient analytic solution, so numerical methods are used. In the present work the modified
Newton’s method is used. For this method two derivatives are required:

) = C1C4+C2CZ'S+C3C+C4
FE) = 4c,5+2.5¢,5 7+ ¢y
£77(8) = 12¢,+3.75¢,8°°

The iterative method of solution calls for the following steps

1)  Assume an initial value for the root; here L « 4, =bo/b
2)  u(t) = f&Y/F7(8)

3) wi(r) - L= F) f7 () (f (5))°

4) o6 = -u(g)/u’(g)

5)  If& <ethen exit otherwise refine the approximation for the root = ¢ + 6 and
repeat steps 2-4.

< 163 >



Figure L1. Jet Boundary Streamline
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